F1000 Prime		Article Recommendations	Q Advar
Article Recommendations	Rankings F1000Prime Rep	orts F1000 Faculty Blog	MyF1000 Sign o
5 Wkhup down Sunday J, Bates A, Nat Clim Chang. 20	cdrudqfh#dqg#kh#jore , Dulvy N. 012 May 23	do#hglwulexwlrq#ci#lqlpdov	7
Alerts for similar articles			Save to MyF1000/Follow Export
Expand All Recommendations	Recom	mendations:	
21 Nov 2012			Score:
21 Nov 2012 Boris Worm F1000 Ecology Dalhousie Unive Halifax, NS, Car	n ersity, nada.		5

This is a very comprehensive study of the effects of temperature on the latitudinal distribution of animals on land and in the sea. The study only considers ectotherms, as they cannot regulate their internal temperature. Interestingly, there is a fundamental difference between the two realms: marine species fill their thermal niches, i.e. their distribution is tied closely to their temperature tolerance, whereas land species tend to 'underfill' their equator-bound ranges, such that there is a thermal buffer to warming temperature. In contrast, they 'overfill' their poleward range, often extending into regions beyond their thermal tolerance. Behavioral mechanisms like hibernation may explain the latter, whereas the reasons for the equator-ward underfilling are less clear. In any case this observation, if general, would mean that the biogeographical effects of climate change should be more easily predicted in the ocean (at least for individual species) than on land. Empirical data on observed range shifts seem to support this assertion.

Disclosures None declared

Add Comment

No comments yet.

Comments:

Library Resources	Article Recommendations	Articles (beta access only)	Articles	Posters
Press Office	F1000Prime Reports	F1000Trials Faculty	Advisory Panel	Upcoming meetings
F1000 Updates	F1000Prime Faculty	About/Contact	Blog	For Depositors
About/Contact	Blog		Submit	For Societies
	Subscribe		Author Guidelines	Register
	About		Register	About/Contact
	Contact		About/Contact	

© 2000-2013 Faculty of 1000 Ltd. ISSN 2051-9796 | Legal | Partner of HINARI • CrossRef • ORCID

The F1000.com website uses cookies. By continuing to browse the site, you are agreeing to our use of cookies. Find out more »