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ABSTRACT 

This document describes available techniques for the assessment of the status of bycatch 
species. For all the approaches discussed, we provide data requirements, caveats, 
assumptions, recommendations, and comments on their accuracy and precision, when 
available. First, we review the direct (i.e., based on catch data) and indirect methods (i.e., based 
on meta-analytical models) for estimating natural mortality that are applicable to bycatch 
species. Second, we describe how natural mortality estimates and other demographic methods 
can be used to estimate sustainable fishing mortality rates, and other reference points.  

RÉSUMÉ 
Le présent document décrit les techniques existantes pour évaluer l'état des espèces faisant 
l’objet de prises accessoires. Pour chaque approche examinée, nous indiquons les exigences 
en matière de données, les mises en garde, les hypothèses, les recommandations et les 
commentaires sur l'exactitude et la précision lorsqu'ils sont disponibles. Tout d'abord, nous 
étudions les méthodes directes (p. ex. : fondées sur les données sur les prises) et indirectes 
(p. ex. : fondées sur des modèles méta-analytiques) d'estimation de la mortalité naturelle qui 
sont appliquées aux espèces faisant l’objet de prises accessoires. Nous décrivons ensuite 
comment il est possible d'utiliser les estimations de la mortalité naturelle et d'autres méthodes 
démographiques pour estimer les taux de mortalité par la pêche durable et d'autres points de 
référence.  
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1 DETERMINING NATURAL MORTALITY RATES 

1.1 BACKGROUND 

In fisheries assessment the total mortality of fish (Z) is typically partitioned into two main 
processes: mortality due to natural causes and that from fishing. Instantaneous natural mortality 
(M) is the rate at which that portion of a population dies, due to causes other than fishing. 
Natural mortality encompasses senescence, disease, and other events, mostly mediated by 
predation. Likewise, instantaneous fishing mortality (F) is the rate at which that portion of a 
population is removed due to fishing. In order to make mortality rates comparable amongst 
different populations as well as being able to easily add and subtract them, these mortality rates 
are exponentiated: 

 𝑁𝑡 = 𝑁0𝑒−𝑍𝑡 (1) 

As per unit of time: 

 𝑁𝑡+1 = 𝑁𝑡𝑒−𝑍 (2) 

where Nt+1 is the number of fish at a later time step t+1, Nt is the number of fish at the earlier 
time step t, and Z is total mortality. As Z = M + F, the equation can be rewritten as: 

 𝑁𝑡+1 = 𝑁𝑡𝑒−(𝑀+𝐹) (3) 

We can convert total mortality (Z) back into percentage survival (S) using the following equation: 

 𝑆 = 𝑒−𝑍 (4) 

Mortality can be estimated directly using mark-recapture data, fisheries-independent surveys, 
and even from abundance differences inside and outside of marine reserves (Willis and Millar 
2005). However, these methods are usually time consuming and expensive. Given the 
difficulties of directly estimating M directly, a number of indirect methods of estimating M have 
been created based on its relationship with life history parameters. One approach to estimate M 
is to first calculate total mortality Z and then partition it into fishing F and natural mortality M. 
This is typically done by calculating and accounting for natural mortality leaving F as a 
remainder. 

We begin by firstly describing methods estimating total mortality Z directly and how to split 
estimates of Z into fisheries (F) and natural mortalities (M), followed by indirect methods of 
estimating natural mortality, which can be subdivided into age-independent methods (i.e., with 
an average estimate of M across their whole lifespan) and age- or size-dependent methods (i.e., 
with varying M with ontogenetic growth). All estimates of instantaneous mortality rates shown in 
this review have a unit of year-1. 

1.2 ESTIMATING TOTAL MORTALITY Z FROM CATCH-AT-LENGTH DATA 

Total mortality Z can be estimated from catch data by comparing abundances among cohorts. 
Three methods are described here, one based on generalizations derived from mean length in 
catch, and two methods which use catch abundances across cohorts; one comparing all cohorts 
within a time-step (catch curves), and a second method which tracks a single cohort through 
different time steps (year-class curves). 
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1.2.1 Mean length in catch 

When a large number of length-frequency data are available from a given stock, by a given 
gear, total mortality Z can be estimated from the mean length (𝐿�) in the catch from a given 
population: 

 
𝑍 =

𝑘 (𝐿∞ − 𝐿�)
𝐿� − 𝐿𝐶

 
(5) 

Where k and L∞ are the von Bertalanffy growth parameters, 𝐿� is the mean length in the catch, 
and LC is the mean length at first capture for the species with the gear (Pauly 1980b). Another 
equation provided that allows the estimation of Z using mean length in catch is: 

 𝑍 =
𝑛𝑘

(𝑛 + 1) log 𝐿∞−𝐿𝐶
𝐿∞−𝐿�

 (6) 

In addition to the parameters defined above, n is the number of individuals used for the 
estimation of 𝐿� . The same equation can be written in terms of asymptotic weight W∞, a 
parameter from a weight-at-age von Bertalanffy growth function: 

 𝑍 =
𝑛𝑘

(𝑛 + 1) log �𝑊∞
3 −�𝑊𝐶

3

�𝑊∞
3 − √𝑊�3

 (7) 

1.2.2 Estimating Z using catch at age - Catch curve analysis 

When catch data are available, total mortality Z can be determined from the decrease in 
observed number of individuals across the age-structure of the population, which is assumed to 
be caused by mortality (rather than emigration). The key assumption is that recruitment is 
constant across years (and hence age classes). In order to estimate Z from catch data, 
knowledge of the age of individuals is required which can be estimated indirectly using age-
length or age-weight conversion equations. A key consideration is in the choice of those age 
classes fully-selected by the fishery to be included in the estimation of the regression slope 
(Figure 1). Most catch curves have an ascending part in the youngest age classes due to low 
gear selectivity, and the slope of the descending limb of the fully selected age classes can be 
used to calculate – Z. 
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Figure 1. Catch curve from hypothetical catch at age data. The slope is estimated with least squares 
regression fitted only to fully selected age classes between 4 and 11 (solid circles), while ages one to 
three, 12, and 13 were not used for the estimation of the slope (open circles). 

This approach makes a number of important assumptions: (1) accurate age determination, (2) 
aged individuals are representative of the population age structure, (3) total mortality is constant 
through the age classes used to fit the regression, (4) constant recruitment through the 
years (perhaps the most important assumption), and (5) that all age classes are equally as 
likely to be caught in the fishing gear. 

This method is applicable to bycatch when there is knowledge of age or length-age relationships 
of a species, and the age structure of catch data is likely to represent the age structure of the 
population. Catch curve analysis can be calculated using the FSA package based on the 
statistical software language R (R Development Core Team 2010). 

1.2.3 Estimating Z using catch at age - Year-class curves 

The year-class curve (also known as longitudinal catch-curve analysis) is a method that also 
estimates total mortality Z, but unlike a catch curve it is fitted to the successive ages of one year 
class – a cohort - rather than successive year classes at their respective ages in one catch 
(Cotter 2007). This overcomes the limitation of the key assumption of traditional catch curve 
analysis – that of constant recruitment. Mortality is calculated from the log Catch Per Unit Effort 
(CPUE) versus age for a single class cohort, and it is derived from equation (1) taking the form: 

 log𝑁𝑎,𝑐 = log𝑁0,𝑐 + 𝑍𝑎𝑔𝑒 (8) 

where Na,c is the number (or abundance index) of fish aged a from age class c, N0,c is the initial 
numbers (or abundance) for age class c, and Za is total mortality for age a (Equation 8). This is 
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the simplest form of the year-class curve model, however in practice it usually has a few added 
parameters to account for error and non-linearity in catchability of different age classes: 

 log𝑁𝑎,𝑐 = log𝑁0,𝑐 + 𝑍𝑎 + 𝛽 log(𝑎 + 1) + 𝜀𝑎,𝑐 (9) 

where log (a + 1) is a term added to the model that allows for lower catchability (i.e., adds non-
linearity) of younger age classes to survey methods, and εa,c is an error term of mean = 0 and 
variance = σ2 (see Cotter 2001 for more explanation on how to derive the error term). The year-
class curve model can be further specified to account for differences between survey methods 
by adding an inter-calibration factor Ss for each survey s: 

 log𝑁𝑎,𝑐,𝑠 = log𝑁0,𝑐 + 𝑍𝑎 + 𝑆𝑠 + 𝛽 log(𝑎 + 1) + 𝜀𝑎,𝑐,𝑠 (10) 

This method requires catch data for a number of cohorts spanning several years. It also allows 
for the implementation of differential recruitment (e.g., youngest age classes being under-
represented by survey methods) as well as providing an estimate of uncertainty (ε) around the 
computed value. 

The year-class curve analysis makes many of the same assumptions as the previous catch 
curve model: (1) accurate age determination, (2) aged individuals are representative of the 
population age structure, (3) total mortality is constant through the age classes used to fit the 
regression, and (4) that all age classes are equally as likely to be caught in the fishing gear. 
Year-class curve analysis also assumes that a cohort can be accurately followed between 
years. The FSA package in R can also compute year-class curves (labeled as longitudinal catch 
curves). 

1.2.4 Partitioning Z into M and F 

It is possible to partition Z into M and F when estimates of Z are available for several years with 
varying annual fishing effort, thus M can be obtained given that: 

 𝐹 = 𝑞 ∗ 𝑓 (11) 

where q is catchability and f is fishing effort. Thus by replacing equation 11 into the equation for 
Z (Z = M + F): 

 𝑍 = 𝑀 + 𝑞𝑓 (12) 

Which, when fitted to points of Z and f from different years, is an equation of the form of a linear 
regression with an intercept M and slope = q. This approach is recommended only for used for 
relatively unexploited stocks. 

1.3 INDIRECT METHODS OF ESTIMATING NATURAL MORTALITY M 

Even though it is one of the most important parameters in fisheries modelling, instantaneous 
natural mortality M is usually the least well-estimated one (Vetter 1988). Natural mortality M is 
typically treated as an overall population or species-level trait and should be considered 
separately from the survivorship schedule of mortality across age or size classes within a 
population or species. Broadcast-spawning fishes are typically thought to follow a type III 
survivorship curve whereby mortality is highest in small size classes and decreases as fish grow 
larger, due to higher mortalities of earlier life stages and decreasing predation with increasing 
size. Given that it can be difficult, costly, and time consuming to directly estimate natural 
mortality rates (M) for marine stocks, it has become a common practice to indirectly derive M 
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from a number of different published models derived from cross-species comparative analyses. 
These models are based on fitting regressions through the relationship between estimated and 
measured M values and a range of life history parameters. Indirect estimates of natural mortality 
are prone to provide substantial error in their predictions thus propagating error (uncertainty) in 
these models is key for their effective use (Pascual and Iribarne 1993). Uncertainty from 
empirical estimates of M comes from three main sources: (1) the quality of life history traits 
estimated which are used to calculate M for the stock of interest (trait error), (2) the variability of 
values between stocks which were used to construct the empirical relationships (coefficient 
error), and (3) uncertainty associated with the nature of the empirical model (model error) 
(Quiroz et al 2010). Trait error can be propagated by accounting for variability or uncertainty in 
input life history values for each model (i.e., providing distributions of input values rather than 
point estimates). Coefficient error can be propagated by providing a distribution of values for 
each coefficient. In this case it is important to account for the correlation structure of coefficients 
in a model, given that these are usually highly correlated with each other. Therefore drawing 
coefficient values should be done from a single multivariate distribution rather than from a 
number of separate univariate distributions. The function M.empirical() in the fish methods 
package in R (Nelson 2011) computes the values of M, but not the coefficient uncertainties, for 
most of the indirect models outlined below.  

1.3.1 Age-independent methods (average M) 

1.3.1.1 Reciprocal of lifespan 

Assuming mortality is similar in each age class, the simplest way of estimating natural mortality 
M is by relating it to the inverse of the maximum age or lifespan (αmax). Beverton and Holt 
originally suggested that M ~ 1/αmax. This approach has been generalised to: 

 𝑀 ≈  
𝐶

𝛼𝑚𝑎𝑥
 (13) 

where C is a constant, which has been traditionally set at 3 for blue crab (Callinectes sapidus) 
stock assessments (Hewitt and Hoenig 2005). Hewitt and Hoenig (2005) suggested setting this 
constant as C = 4.22. For example, for a population with a maximum age of 10 years, using the 
updated value of C = 4.22 and equation (3) in order to translate instantaneous mortality into 
survival, the average proportion of animals dying in each year is: 1 – S = 1 –  e-4.22/10 which 
equates to 34.4% of the population dying each year on average. 

1.3.1.2 Comparative analysis of longevity and mortality by Hoenig (1983) 

Using a cross-species comparative analysis from molluscs, cetaceans, and fishes, Hoenig 
(1983) related M to lifespan (αmax) using least squares regression. The first equation is 
applicable for all three taxa previously mentioned:  

 log𝑀 = 1.44 − 0.982 log𝛼𝑚𝑎𝑥 (14) 

When using data from fishes only the equation is: 

 log𝑀 = 1.46− 1.01 log𝛼𝑚𝑎𝑥 (15) 

The Hoenig (1983) model is one of the most commonly used indirect estimators of natural 
mortality given its sound theoretical basis. It is based on the idea that only a small fraction  
(around 1.5%) of the population reaches the last year of life (αmax), thus it can be used to 
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calculate the average mortality rate that will result in the death of most individuals before 
reaching the maximum lifespan. 

1.3.1.3 Comparative analysis of temperature, VBGF, and mortality by Pauly (1980a) 

Pauly’s (1980a) methodology uses the von Bertalanffy growth parameters (k, L∞ or W∞), as well 
as mean annual water temperature (T, in °C) to estimate natural mortality in fishes. Equations 
linking growth, temperature to mortality were estimated from least squares regression fits to 
comparative data spanning 175 fish stocks. The equation for weight-derived growth parameters 
is as follows: 

 log𝑀 =  −0.2107− 0.0824 log𝑊∞ + 0.6757 log𝐾 + 0.4627 log𝑇 (16) 

The equation for length-derived growth parameters is: 

 log𝑀 =  −0.0066− 0.279 log𝐿∞ + 0.6543 log𝐾 + 0.4634 log𝑇 (17) 

Pauly’s equation has also been widely used for estimating M for a wide range of species, 
particularly due to the wide availability of von Bertalanffy growth parameters in marine species.  

1.3.1.4 Jensen (1996) 

By optimization of the tradeoffs between survival and fecundity, Jensen (1996) provided the 
following equation to calculate M, based on age at maturity (α): 

 𝑀 =
1.65
𝛼

 (18) 

1.3.1.5 Recommendations 

There is broad scope of error in all indirect methods of estimating natural mortality. While the 
Pauly (1980a) method was broadly used shortly after its publication, the Hoenig (1983) equation 
is more widely used at present for estimating average M. Whenever possible, we recommend 
using a number of different equations for estimating average M and using a multi-model 
approach to account for uncertainty in model choice. In its simplest form, this would consist of 
using a range of values between the lowest and highest estimates of average M for a given 
stock. Distributions of M value can be produced with this approach is also taking into account 
other sources of uncertainty (e.g., coefficient error or trait error). Multi-model approaches can be 
applied using Monte Carlo simulation or a Bayesian framework.  

1.3.2 Size-dependent methods 

Size-dependent models calculate M based on the observation that, in general, natural mortality 
rate decreases with size due to reduced predation. Whereas some methods use von Bertalanffy 
growth parameters to estimate size-dependent natural mortality (Chen and Watanabe 1989, 
Gislason et al. 2010), others calculate natural mortality as a function of weight (Peterson and 
Wroblewski 1984, McGurk 1986, Lorenzen 1996). It is important to know that both these weight-
based methods for estimating M exhibit power relationships consistent with metabolic theory of 
ecology where biological rates, such as mortality, should scale with body mass to the power of -
1/4 (Brown et al. 2004). 
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1.3.2.1 Chen and Watanabe (1989) 

Chen and Watanabe (1989) modelled M based on the von Bertalanffy growth parameters (k and 
t0) using two separate functions: an age-specific one for the ages prior to the onset of 
senescence (t ≤ tm) and an age-independent model for ages after the onset of senescence (t ≥ 
tm). This model describes a bathtub (U-shaped) mortality curve consisting on decreasing 
mortality with increasing size which increases at the end of the organism’s lifespan due to 
senescence. The two part model is as follows: 

 

𝑀(𝑡) =  

⎩
⎨

⎧
𝑘

1 − 𝑒−𝑘 (𝑡−𝑡0) , 𝑡 ≤  𝑡𝑀
𝑘

𝑎0 + 𝑎1(𝑡 − 𝑡𝑀) + 𝑎2(𝑡 − 𝑡𝑀)2
, 𝑡 ≥ 𝑡𝑀

 

(19) 

where the upward mortality trend observable in this model is provided by the following three a 
coefficients: 

 𝑎0 = 1 − 𝑒−𝑘(𝑡𝑀−𝑡0)

𝑎1 = 𝑘𝑒−𝑘(𝑡𝑀−𝑡0)

𝑎2 = 1
2
𝑘2𝑒−𝑘(𝑡𝑀−𝑡0)

 
(20) 

and the point at which the reproduction and senescence phases meet and mortality begins to 
increase (tM), thus providing the “bathtub” shaped curve, is defined as: 

 𝑡𝑀 = −
1
𝑘

ln�1 − 𝑒𝑘𝑡0� + 𝑡0 
(21) 

1.3.2.2 Gislason et al.(2010) 

Another methodology to estimate length-based mortality in marine and brackish water fishes 
was recently developed by Gislason et al. (2010), which builds upon the comparative analysis 
developed by Pauly (1980a). Based on a thorough data selection process which eliminated all 
but the most robust estimates of M the comparative analysis of 168 estimates of M from 70 
publications is as follows: 

 log𝑀𝐿 = 0.55 − 1.61 log𝐿 + 1.44 log𝐿∞ + log𝑘 (22) 

where ML is mortality at length L, and k and L∞ are the von Bertalanffy growth parameters for the 
stock in question.  

The Gislason et al. (2010) model has been adopted since its publication (e.g., Le Quesne and 
Jennings 2012). However, while this equation realistically shows that mortality declines 
ontogenetically with increasing size, it does not realistically capture the lower overall mortality 
observed in larger species (compared with smaller ones).This anomaly led to Charnov et al. (in 
press) to re-analyze the same data but from a more mechanistic basis founded in life history 
optimality theory. These authors conclude that the coefficients for L and L∞ are not statistically 
different and find that a common exponent of 1.5 provides a better fit to the data and conclude 
that the Gislason et al. (2010) equation can be generalized as: 
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𝑀 = �

𝐿
𝐿∞

�
−1.5

× 𝑘 
(23) 

Furthermore, this equation is more consistent with life history optimisation and tradeoffs than the 
phenomenologically derived Gislason et al. (2010) one. 

1.3.2.3 Peterson and Wroblewski (1984) 

Peterson and Wroblewski (1984) created a size-specific equation for estimating mortality in 
pelagic marine fishes using weight (in grams): 

 𝑀𝑊 = 1.92 𝑊−0.25 (24) 

where MW is natural mortality rate at weight W in grams. Their analysis is based on the idea that 
predation is the chief process driving natural mortality. However, their model underestimated 
mortality of the early larval stages of pelagic fishes. McGurk (1986) noted this, and came up 
with an updated model to predict egg and larval natural mortality, discussed below.  

1.3.2.4 McGurk (1986) 

By acknowledging that patchiness of eggs and larvae can have an effect on their mortality, 
McGurk (1986) proposed an equation based on the work of Peterson and Wroblewski (1984) 
that estimates natural mortality for eggs and larvae of pelagic fish for weight (in grams): 

 𝑀𝑊 = 0.0803 𝑊−0.85 (25) 

where MW is natural mortality rate at weight W in grams. This equation should not be 
extrapolated to adult fishes; in that case equation (21) provides a better estimate of M (McGurk 
1986). 

1.3.2.5 Lorenzen (1996) 

Lorenzen derived an equation for estimating M in fish based on their individual weight, using a 
comparative analysis data from 308 estimates of M from fish in both freshwater and marine 
ecosystems. 

 𝑀𝑊 = 3.00 𝑊−0.288 (26) 

where MW is natural mortality rate at weight W in grams. When analysing only values from 
marine fishes (n = 113), the equation is as follows: 

 𝑀𝑊 = 3.69 𝑊−0.305 (27) 

Lorenzen’s (1996) equations explicitly exclude egg and larval stages from their analyses, thus 
they should not be used to predict natural mortality for those stages. 

1.3.2.6 Recommendations 

As with size-independent models, quantifying performance of indirect estimates of mortality can 
be difficult due to the paucity of direct estimates of M in the literature. If there is enough life 
history data available, we recommend the use of a multi-model approach to account for 
uncertainty in model selection. A multi-model approach accounts for model uncertainty and 
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provides a range of values for M instead on a single deterministic estimate with no uncertainty 
associated with it. 

2 ESTIMATING SUSTAINABLE FISHING MORTALITY RATES 

In this section we highlight three methods that use life history theory to calculate a series of 
target and limit reference points for fishing mortality, including: (a) Euler-Lotka derived limit 
reference points (Fcrash, Fextinct), (b) yield-per-recruit target reference points (Fmax, F0.1), and (c) 
spawner per recruit-derived target reference points (F40). 

2.1 BROAD GENERALIZATIONS 

The simplest generalization for estimating sustainable harvest rates is derived from 
observations by Tiurin (1962) where, in the absence of density dependence, the fishing mortality 
rate that will provide maximum sustainable yield (Fmsy) equals the natural mortality rate M: 

 𝐹𝑀𝑆𝑌 = 𝑀 (28) 

From this equation, it follows that the maximum sustainable yield is a proportion of virgin 
biomass B0. For logistic growth with linear density-dependence in births and deaths this takes 
the form: 

 𝐵𝑀𝑆𝑌 = 0.5 𝐵0 (29) 

These extremely broad generalization has been widely criticized, with numerous authors 
pointing out that equating Fmsy to M is extremely risky, while some suggesting to use 
0.8Minstead of 1M (Thompson 1993). Gulland (1970) used the two previous equations in order 
to obtain a generalized equation for catch at MSY:  

 𝑀𝑆𝑌 = 0.5 𝑀 𝐵0 (30) 

This equation is commonly used as a proxy for sustainable harvest rates. For example, in the 
Depletion-Corrected Average Catch methodology (DCAC, section 4.4) they use a more 
conservative version of this equation as an approximation of potential yield at MSY using a 
coefficient of 0.4 instead of 0.5 of the virgin biomass B0. 

2.2 FCRASH 

The fishing mortality that will make a population become extinct in the long term (Fcrash) is a 
parameter that is a useful upper limit for fishing mortality of a stock. Theoretically, it is equivalent 
to Fextinct (section 3.5.3) but is derived from different analyses. The simplest approximation for 
Fcrash is an extension of equation 28 above, where Fcrash is twice FMSY so that: 

 𝐹𝑀𝑆𝑌 = 2 𝑀 (31) 

This method, albeit very broad and prone to large uncertainties, is still being used for current 
fisheries assessment models (Zhou and Griffiths 2008). 

A second proxy for Fcrash can be obtained from an equation derived from a delay-difference 
model by Deriso (1982): 
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𝑢𝑢𝑝𝑝𝑒𝑟 ≤ �

1
𝜌𝑙2𝑟𝑣

 
(32) 

where uupper is the upper bound for exploitation rate (which was considered equivalent to ucrash, 
with Fcrash = - log(1 - uupper) , ρ is the Brody’s growth coefficient (equivalent to von Bertalanffy k), l 
is the annual natural survival fraction for adults [l = e(-M)], and rv = [(1-ρl)(1-l)]-1.This proxy was 
also used by Zhou and Griffiths (2008) assessment model. 

2.3 YIELD-PER-RECRUIT MODELS 

Yield-per-recruit models (YPR) are based on the idea that the total biomass of a cohort 
increases as individual fish grow in weight but mortality in numbers mean that the average yield 
per individual recruit reaches a maximum values at an intermediate length. Subjecting these 
cohorts to different rates of age-specific fishing mortality can give differing overall yield. This 
approach ignores recruitment; instead the calculations begin by applying growth, and mortality 
to a fixed number of individuals. The method requires a growth curve, age at first capture, and 
an idea of for the mortality schedules for each cohort.   

2.3.1 Fmax and F0.1 

The primary target reference point obtainable from yield-per-recruit models is Fmax, which is the 
fishing mortality at which yield is maximized, and should be equivalent to MSY. Due to the limit 
nature of Fmax, stochastic processes in catch, recruitment, and mortality can drive stocks to be 
overfished even when fished at Fmax. Thus a more conservative reference point: F0.1 was 
suggested, which is the fishing mortality at which the increase in yield per unit of fishing 
mortality increases at 10% of its initial yield (i.e., yield at lowest levels of F). (Assumptions, 
caveats and performance will be expanded upon later) 

2.4 SPAWNER PER RECRUIT MODELS 

Spawner per recruit models are an extension of yield-per-recruit models which take into account 
recruitment dynamics while assessing catch and assess the effect of fishing on the spawning 
potential of a stock (Gabriel et al. 1989). Spawner per recruit models are based in the spawning 
stock biomass (SSB) equation proposed by Beverton and Holt (1957), which was then 
parameterized by Pope et al. (2000) as: 

 
𝑆𝑆𝐵 = 𝑅 ∙ 𝑒[−𝑀(𝑡𝑐−𝑡𝑟)−𝑍(𝑡𝛼−𝑡𝑐)] ∙ 𝑎 ∙ 𝐿∞3 ∙�𝑈𝑖 �

(1 − ℎ)𝑖

1 − 𝑒(−𝑍−𝑖𝑘)�
3

𝑖=0

 
(33) 

where SSB is the spawning stock biomass of a year class of R recruits that recruit at age tr, are 
then captured at age tc and mature at age ta, M is instantaneous natural mortality, Z is 
instantaneous total mortality, and Ui is the cubic expansion to convert from length to weight and 
Ui = +1, -3, +3, -1 for i = 0, 1, 2, 3, respectively. From this general equation a series of target 
and limit references points can be calculated. 

2.4.1 F%SPR 

By investigating the relationship in stock-recruitment curves between optimum F and life history 
parameters, Clark (1991) noted that a yield just under MSY could be achieved by applying a 
fishing pressure which would reduce the biomass per recruit to around 35% of its unfished level. 
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The ratio between biomass per recruit (SSB) and virgin biomass per recruit is known. This 
Spawning Potential Ratio (SPR) can be defined as: 

 
𝑆𝑃𝑅 =

𝑆𝑆𝐵𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑
𝑆𝑆𝐵𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑

 
(34) 

where SSBexploited and SSBunexploited are the spawning stock biomass at the exploited and virgin 
levels, respectively.  Values ranging from F35 to F40 are thought to represent a reliable proxy for 
FMSY (Clark 1991, Clark 1993, Mace 1994, Mace and Sissenwine 2003, Ault et al. 2008), while 
values ranging from F20 to F30are thought to represent recruitment overfishing thresholds 
(Goodyear 1993, Rosenberg et al. 1994). Restrepo et al. (1998) suggested using proxies 
ranging from F35 for highly resilient stocks to F60 for stocks with low productivity (such as 
elasmobranchs). 

2.4.2 Fjeopardy (Fϕ) 

Based on the spawner per recruit framework, Pope (2000) came up with a model to calculate 
the fishing mortality that will reduce the spawning potential ratio (SPR) below certain threshold 
or jeopardy level, or Fϕ. Here, Pope arbitrarily chose a jeopardy level,ϕof 5% corresponding to a 
95% decline in SPR. This approach is mathematically equivalent to the F40approach originally 
proposed by Clark (1991). However, Fϕ is meant to be used as a risk measure or limit reference 
point instead of a safe fishing level or target reference point, which is the objective of F40. The 
threshold suggested by Pope is ϕ, thus Fϕ= F05, which is a limit threshold, rather than a target 
one, like F40. The Fjeopardy model is: 

 
𝜑 = 100 ∙ {−𝐹𝜑 ∙ (𝑡𝛼 − 𝑡𝑐)} ∙

∑ 𝑈𝑖 �
(1−ℎ)𝑖

1−𝑒(−𝑍−𝑖𝑘)�
3
𝑖=0

∑ 𝑈𝑖 �
(1−ℎ)𝑖

1−𝑒(−𝑀−𝑖𝑘)�3
𝑖=0

 
(35) 

where tc is age at capture, tα is age at maturity, M is instantaneous natural mortality, Z is 
instantaneous total mortality, and the cubic expansion of the VBGF to convert from length to 
weight is Ui = +1, -3, +3, -1 for i = 0, 1, 2, 3, respectively.  

2.5 USE OF LIFE HISTORY RELATIONSHIPS TO PARAMETERIZE YIELD MODELS 

Relationships among life history parameters can be used to predict unknown parameters such 
as natural mortality rate, and thus, can be useful to predict vital rates in situations where there is 
minimal data. These correlations are derived from life history theory; an area of study whose 
primary premise is that the biological trait of any given population is constrained by evolutionary 
trade-offs. These life history trade-offs, also known as life-history invariants, were first 
discovered by Beverton and Holt (1959) half a century ago. They noted that the ratios between 
certain life history parameters were relatively constant amongst a given taxon (i.e., invariant 
ratios). The calculation and use of invariants as predictive tools has been increasingly 
investigated in recent years (Charnov 1993, Jensen 1996, Frisk et al 2001, amongst others). 
The most commonly-used example of its use comes from the equations used for the indirect 
estimation of natural mortality (e.g., Pauly 1980a, Chen and Watanabe 1989, Jensen 1996, 
Gislason et al 2010). Aside for predicting natural mortality, invariant relationships have been 
created to predict reproductive effort (Charnov 2008, Gislason et al. 2008), age at maturity 
(Gislason et al. 2008), and growth coefficients (Le Quesne and Jennings 2012), amongst 
others. Most assessments of the status of a fish population will use, to varying degrees, 
estimates derived from trends between life history parameters. 
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These methods are widely applicable to any taxa from which basic life history data is available. 
In the absence of such equations, sufficient life history parameters need to be gathered in order 
to calculate the relationships between them. 

As mentioned above, most of the tools for estimating natural mortality indirectly come from life 
history correlates. Furthermore, correlates have been used to completely parameterize 
demographic models in data-poor situations, including elasmobranchs (Frisk et al. 2001) and for 
target and bycatch species in research trawl surveys(Le Quesne and Jennings 2012) gathered 
a number of life-history relationships (Table 1) and applied them to most of species caught 
(target and bycatch) North Sea bottom trawl fishery in order to parameterize an age structured 
yield-per-recruit (YPR) model using only known maximum size. 

Table 1. Life history relationships used by Le Quesne and Jennings (2012) to parameterize age-
structured spawner per recruit models using only maximum size.

 

This approach is very desirable due to its potential for very small data requirements and 
simplicity of use. These methods are very flexible in that they allow for the parameterization of 
even the most data-thirsty models based on life history parameters by predicting these using 
invariant relationships, thus allowing for a quick analysis of a vast number of species. 

By modeling life history parameters, these approaches are usually accompanied by large 
uncertainties in their outputs which are seldom accounted for. A commonly overlooked source of 
uncertainty in these models comes from the coefficients in the equations used to predict life 
history relationships: rather than being point estimates these always vary (and covary), and as 
such, their uncertainty should be propagated throughout the hierarchical framework (Pardo et al. 
2010). Also, these models are based on the main trends observed between life history 
parameters and as such are unable to predict exceptions (Le Quesne and Jennings 2012). 

 

Unit Relationship Source

Function
Asymptotic length cm log10(L∞ ) = 0.044 + 0.9841 *log10(L max) Froese & Binohlan (2000) equation 5
Weight g W t = 0.01 * L t

3 Gislason et al. (2008) equation 14

Natural mortality rate per year M t = exp(0.55 - 1.61 * log(L t) + 1.44 * log(L ∞) + log(k )) Gislason et al. (2010) equation 2

Relative reproductive 
output

R  = L t
3.75 Le Quesne & Jennings (2012) 

appendix S1

Teleosts
von Bertalanffy k per year k  = 2.15 * L ∞

-0.46 Le Quesne & Jennings (2012)

Length at first maturity cm L mat = 0.64 * L ∞
0.95 Gislason et al. (2008) Table 1

Elasmobranchs
von Bertalanffy k per year k  = -0.17 * log(L max) + 0.97 Frisk et al. (2001) Fig. 6
Length at first maturity cm L mat = 0.7 * L max + 3.29 Frisk et al. (2001) Fig. 1
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2.6 DEMOGRAPHIC APPROACHES 

2.6.1 Euler-Lotka equation 

The Euler-Lotka population equation is the basis of most modern demographic analyses. It is 
based on the concept that in a stable population, based on survival and reproductive rates 
varying with ontogeny, an individual produces on average one offspring to replace itself: 

 
�𝑙𝑥𝑚𝑥𝑒𝑟𝑥 = 1
𝑤

𝑥=𝛼

 
(36) 

where lx is survival at age x, mx is annual reproductive output at age x, and r is the intrinsic rate 
of population increase.  

2.6.2 Au and Smith (1997) rebound potential 

From this equation, Au and Smith (1997) created a simplified version in order to estimate 
rebound potential r which accounting for density dependence: 

 𝑒−(𝑀+𝑟) + 𝑙𝛼𝑏𝑒−𝑟𝑥�1− 𝑒−(𝑀+𝑟)(𝑤−𝑎+1)� = 1 (37) 

where α is age at maturity, w is maximum reproductive age, M is adult instantaneous natural 
mortality, b is average number of female pups per adult female, and lα is pre-adult survival. If not 
obtainable through other means, pre-adult survival can be defined as: 

 𝑙𝛼 = 𝑒−𝑀(𝑤−𝑎) (38) 

Furthermore, in order to obtain an estimate of r that accounts for density dependence, the 
modified Euler-Lotka equation is solved for Z instead of M, and assuming Z = M + F = 2M when 
the stock is around MSY it should be stable, r is set to zero: 

 𝑒−(𝑍) + 𝑙𝛼,𝑍�1 − 𝑒−𝑍(𝑤−𝑎+1)� = 1 (39) 

Now, a new estimate of pre-adult survival lα,Z is obtained, which then replaces lαin the original 
equation in order to estimate a depleted stock rebound potential rZ. Thus this growth potential rZ 
can be defined as the minimum possible fishing mortality that will maintain a population, albeit at 
extremely low biomass. Thus, it is used as a limit reference point rather than a target one. 

2.6.3 Fextinct 

The Euler-Lotka equation is typically used to calculate r the intrinsic rate of population increase. 
In the absence of density dependence r is the same as Fextinct, the fishing mortality that will drive 
the population to extinction. Hence this approach can be used to calculate Fextinct, or the fishing 
mortality that will drive a species to extinction (Myers and Mertz 1998): 

 𝑏 = 𝑒�𝐹𝑒𝑥𝑡𝑖𝑛𝑐𝑡(𝛼𝑚𝑎𝑡−𝛼𝑠𝑒𝑙+1)�(1 + 𝑒−(𝑀+𝐹𝑒𝑥𝑡𝑖𝑛𝑐𝑡)) (40) 

where b is annual reproductive output αmat is age at maturity, αsel is the age of selectivity into the 
fishery, and M is natural mortality. Annual reproductive output b is calculated from litter size (l) 
and interbirth interval (i) for females only: 
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 𝑏 =
𝑙
𝑖

× 0.5. (41) 

This equation ignores density dependence and hence is most applicable to species with low 
rates of reproduction or depleted stocks, and as such it can be used as a proxy for rmax, (J. 
Carlson, pers. comm.). Thus, parameters used as input into the equation also need to be 
derived from depleted scenarios. 

2.6.4 Recommendations 

Demographic approaches provide useful limit reference points (i.e., the minimum sustainable 
levels of mortality) for species which have been severely exploited as they provide an idea of 
the intrinsic rate of increase in the absence of density dependence. They can be easily 
calculated with basic life history information, and allow for quick comparison between species, 
which is why they have been used in ecosystem-based approaches (Simpfendorfer et al. 2008, 
see section 5.4).  

3 ESTIMATING SAFE BIOLOGICAL LIMITS FROM CATCH DATA 

3.1 ORCS REPORT METHODS 

Only Reliable Catch Stocks, or ORCS, is a classification of a fishery for which only catch data 
and possibly a few parameters derived from life history relationships are available (Berkson et 
al. 2011). A recent review of methods of assessing ORCS was compiled by Berkson et al. 
(2011), and the following section summarize these methods with particular focus on their 
application to bycatch stocks. The four methods outlined below are ordered from least data 
requirements to greatest data needs. 

3.2 SCALAR MULTIPLIED BY THE ABC OF THE TARGET SPECIES, WHEN ORCS ARE 
BYCATCH SPECIES 

In certain data-poor fisheries, bycatch quotas (in the form of Acceptable Biological Catch, ABC) 
are calculated as a proportion of the targeted stock’s ABC. The ABC of the target is multiplied 
by a scalar value that is determined by expert judgment and usually is precautionary in nature. 
The only data required is the quota for the target species. Scalars that have been used in 
fisheries have ranged between 5 and 16% of the target fishery (Berkson et al. 2011). Monitoring 
programs (e.g., estimates of species composition in landings, observer data, and fishery-
independent surveys) are required when using this approach to ensure the sustainable 
management of bycatch species because the appropriate scalar cannot be known before it is 
applied. 

This method is as simple as it is uncertain in its outcome. However, when applied to species or 
species groups that are experiencing only minimal fishing-related mortality, it is likely that the 
risk of overfishing is low (Berkson et al. 2011).  

3.3 NATURAL MORTALITY-BASED APPROACH 

This method, developed for ORCS in New Zealand (Anon 2009) is a variant of the scalar 
approach. It is based on the following formula: 
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 𝑀𝐶𝑌 = 𝑐 × 𝑌𝑎𝑣𝑒 (42) 

where MCY is maximum constant yield, c is the natural variability factor, and Yave is the average 
catch over a specified period of time. The relationship between natural variability factor c and 
natural mortality as used in New Zealand is defined in Table 2. Stocks with higher natural 
mortality are expected to have fewer age classes, thus a lower natural variability factor 
coefficient is assigned to counteract the effect of greater biomass fluctuations derived from fast 
life histories. If Yave is determined from a period of time when the stock was fully exploited, then 
Yave ≈ MAY (Maximum Average Yield) and should provide a good estimate of MCY. If on the other 
hand, the stock was under-exploited, a conservative estimate of MCY is obtained.  

Table 2. Values for the natural variability factor c as determined by natural mortality values (M) based on 
method developed for New Zealand stocks (Anon 2009).  

 

An adequate period of time from which to base Yave estimates is required, as is knowledge of the 
fishery. The period upon which Yave is based should ideally contain no systematic changes in 
fishing mortality, no systematic changes in fishing effort if it correlates with M, and no systematic 
changes in catch. The period should also be at least half the exploited lifespan (i.e., the number 
of year classes which are removed by the fishery) of the species being assessed. If the period 
shows a systematic increase in catch then it will result in an under-estimate of MCY; the method 
will produce an overestimate if the trend is decreasing. An estimate of natural mortality is also 
required to assign a value for c (See table 2). 

This approach assumes that the stock is stable and that the fishery is at or near sustainable 
levels of removal. Thus, for fisheries where effort is highly variable or the stock is being 
overfished, this approach might not be appropriate.  

3.4 DEPLETION-CORRECTED AVERAGE CATCH (DCAC) 

When a reliable long-term catch time series are available, sustainable catch can be estimated 
using a methodology developed by MacCall (2009), based on the work by Restrepo et al. 
(1998). This approach consists in accounting for increases in catch that result from reduction in 
standing stock, and as the name implies, correcting catch values accordingly. This methodology 
provides estimates of a sustainable yield, rather than MSY, which might be of importance to 
some fisheries managers.  

By assuming that biomass at MSY is a proportion of virgin biomass BMSY = 0.4B0, and that FMSY 
is proportional to natural mortality (M), FMSY = cM, where c is a tuning adjustment, the potential 
maximum sustainable yield, in this case called potential yield, Ypot, is a more conservative 
equivalent of equation 30 and can be expressed as: 

M c

< 0.05 1.0
0.05 - 0.15 0.9
0.15 - 0.25 0.8
0.26 - 0.35 0.7

> 0.35 0.6
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 𝑌𝑝𝑜𝑡 = 0.4𝑐𝑀𝐵0 (43) 

A one-time windfall harvest can be taken to deplete a stock from B0 to Bmsy, thereafter only a 
smaller sustainable yield Ypot can be taken. Assuming also that windfall harvest W can be 
expressed as the difference in biomass between the first and last years, i.e., W = BFYR - BLYR, 
relative decline in abundance Δ, can be expressed as: 

 ∆=
𝐵𝐹𝑌𝑅 − 𝐵𝐿𝑌𝑅

𝐵0
 (44) 

Therefore by replacement, the ratio W/Ypot which expresses the magnitude of the windfall 
harvest relative to a single year of potential yield, and forms the basis for depletion correction, 
can be expressed as: 

 𝑊
𝑌𝑝𝑜𝑡

= ∆𝐵0
0.4𝑐𝑀𝐵0

= ∆
0.4𝑐𝑀

, (45) 

thus removing virgin biomass (a “data rich” parameter) from the equation. By assuming that on 
average each year one unit of annual sustainable yield is produced, the resulting catch can be 
expressed as the sum of two components; one derived from sustainable annual production, and 
the other from a one-time windfall harvest. Therefore, for a catch series C of length n, the yield 
that could potentially have been sustained (Ysust) during that period can be calculated by: 

 
𝑌𝑠𝑢𝑠𝑡 =

∑𝐶
𝑛 + 𝑊 𝑌𝑝𝑜𝑡⁄  

(46) 

where ΣC is the total cumulative catch and n = LYR – FYR + 1. 

Aside from catch data, which does not need to be comprehensive, knowledge of a distribution of 
values for BMSY relative to virgin biomass (B0) is required. A size-independent estimate of natural 
mortality M, usually coming from indirect estimates derived by life histories is also needed (i.e., 
methods detailed in section 2.3.1). DCAC also requires an estimate of the ratio of FMSY to M (c), 
which is commonly between 0.6-1.0 (MacCall 2009). This value is hard to obtain, and is usually 
derived from expert opinion.  

This approach is better suited for bycatch species whose catch has been monitored for an 
extended period of time. Also, this method has been shown to be reliable only for species with 
low mortality rates (≤ 0.20 yr-1), which are usually slow growing and late maturing, as the 
depletion correction factor becomes negligible with higher M values. This methodology has the 
assumption of unbiased catch statistics. It does not assume constant stock abundance; B is 
explicitly allowed to vary. The requirement of expert opinion to set a ratio of FMSY to M might 
slightly bias results. The DCAC model assumes that the ecosystem and fishery dynamics do not 
change over time, which might not be the case with developing fisheries or severely depleted 
stocks. 

Aside from being a methodology that has low data requirements, DCAC allows for easy 
propagation of uncertainty using Monte Carlo simulation, and thus provides a probability 
distribution of sustainable yield. DCAC has been used by Pacific Fishery Management Council 
(PFMC) in the U.S. to set overfishing limits for six species of rockfish (Sebastes spp.) and the 
tope shark Galeorhinus galeus (Berkson et al. 2011).The NOAA’s Fisheries Toolbox developed 
by the National Marine Fisheries Service includes a program for performing DCAC assessments 
(http://nft.nefsc.noaa.gov/Download.html). 

http://nft.nefsc.noaa.gov/Download.html
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3.5 DEPLETION-BASED STOCK REDUCTION ANALYSIS (DB-SRA) 

Depletion-Based Stock Reduction Analysis (DB-SRA, Dick and MacCall 2011) is a recent 
extension of the DCAC framework, which is incorporated into a stochastic stock reduction 
analysis (SRA) framework (Walters et al 2006). The DB-SRA incorporates complete stock 
dynamics, and as such, has slightly higher data requirements than DCAC. 

The DB-SRA model requires much more comprehensive catch data than DCAC, which needs to 
encompass long-term abundances (i.e., before the stock was exploited) in order to have a 
reliable estimate of B0. Knowledge of a distribution of values for BMSY relative to B0 is also 
required. A size-independent estimate of natural mortality M, usually coming from indirect 
estimates derived by life histories is also needed (i.e., methods in section 2.3.1). DB-SRA also 
requires a distribution of values for the ratio FMSY/M, which is commonly between 0.6-1.0 
(MacCall 2009). This value is hard to obtain, and is usually derived from expert opinion. A value 
for age at maturity for the stock is required for the surplus production model that is incorporated 
into DB-SRA. 

Aside from the DCAC model previously explained, DB-SRA includes a two-part production 
model: one being a standard Pella-Tomlinson-Fletcher (PTF) generalized production model 
(Fletcher 1978) for high values of BMSY/B0, while a hybrid Schaefer model based on McAllister et 
al (2000), for low BMSY/B0 as the PTF model produces excessive productivity estimates at low 
biomasses (Fletcher 1978). This does not occur in the hybrid Schaefer model due to its linear 
rather than negative exponential nature. 

The DB-SRA framework used Monte Carlo simulation to assess uncertainty in parameters. 
When parameters are drawn for the value of BMSY/B0, which defined as Bmnpl: 

 𝐵𝑚𝑛𝑝𝑙 =
𝐵𝑀𝑆𝑌
𝐵0

 (47) 

its value determines which type of production model is used. If Bmnpl > 0.5, the standard Pella-
Tomlinson-Fletcher (PTF) generalized production model (Fletcher 1978) is used, and has the 
form of: 

 
𝑃 = 𝑔𝑚 �

𝐵𝑡−𝛼
𝐵0

� − 𝑔𝑚�
𝐵𝑡−𝛼
𝐵0

�
𝑛
 

(48) 

where P is latent annual production, B0 is virgin biomass, m is MSY, and n is the skewness 
parameter. Skewness n is calculated by solving: 

 𝐵𝑚𝑛𝑝𝑙 = 𝑛1/(1−𝑛) (49) 

g is calculated from: 

 
𝑔 =

𝑛
𝑛

𝑛−1

𝑛 − 1
 

(50) 

and m is calculated as m = Umsy * Bmnpl * B0, where Umsy is the annual exploitation rate: 
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𝑈𝑚𝑠𝑦 = �

𝐹𝑚𝑠𝑦
𝐹𝑚𝑠𝑦 + 𝑀�

(1 − 𝑒−�𝐹𝑚𝑠𝑦+𝑀�) 
(51) 

where Fmsy is calculated by the product between the draws from natural mortality M and the 
Fmsy/M ratio (Fmsy = M(Fmsy/M) ). 

When Bmnpl < 0.5, then a modification of the hybrid production model of McAllister et al. (2000) is 
used, thus the corresponding Schaefer model is: 

 
𝑃(𝐵𝑡−𝛼 < 𝐵𝑗𝑜𝑖𝑛) = 𝐵𝑡−𝛼 �

𝑃(𝐵𝑗𝑜𝑖𝑛)
𝐵𝑗𝑜𝑖𝑛

+ 𝑐(𝐵𝑡−𝛼 − 𝐵𝑗𝑜𝑖𝑛)� 
(52) 

where the slope of the Schaefer model (c) is: 

 𝑐 = (1 − 𝑛)𝑔𝑚𝐵𝑗𝑜𝑖𝑛𝑛−2𝐵0−𝑛 (53) 

with n, g, and m as above. The value for the join-point Bjoin (i.e., the point where the hybrid 
Schaefer model intersects the PTL model) is set depending on Bmnpl: 

if Bmnpl < 0.3, Bjoin/B0 = 0.5Bmnpl; 

if 0.3 < Bmnpl < 0.5, Bjoin/B0 = 0.75Bmnpl – 0.075. 

The model, which each parameter draw from the Monte Carlo simulation is then solved for B0, 
from which the delay-difference equation is used to estimate time series of abundances: 

 𝐵𝑡 = 𝐵𝑡−1 + 𝑃(𝐵𝑡−𝑎)− 𝐶𝑡−1 (54) 

Where C is catch, Bt is biomass at time t, and P is latent annual productivity. The initial estimated 
value of B0 is then adjusted until the value of BT, (which is the biomass at time T, where T is a 
specific year with does not have to be the final year in the time series) satisfies the given value 
of relative depletion level BT/B0. If successful (Bt > 0 for all t), then management quantities can 
be calculated for the iteration of initial values: 

Bmsy = K (Bmsy/K) 

Fmsy = M (Fmsy/M) 

MSY = Bmsy* Umsy 

CFmsy = Umsy * Bt (equal to overfishing Limit, OFL) 

Therefore, when a large number of Monte Carlo simulations have been run, the empirical 
distributions of these values can be computed. This framework allows for the easy propagation 
of uncertainty in parameters by drawing them from specified distributions. 

The DB-SRA approach accounts for major sources of uncertainty by using distributions rather 
than point estimates for input parameters. Therefore it provides a more robust analysis than 
DCAC at the cost of higher data requirements. The performance of DB-SRA has been 
compared with that of complete stock assessments for data-rich stocks, and this research 
suggests the models are effective at estimating sustainable yields for data-poor stocks (Dick 
and MacCall 2011). 
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3.6 RECOMMENDATIONS 

Berkson et al. (2011) recommended the use of DB-SRA when catch data encompasses pre-
exploitation levels. In the absence of catch data of such quality, the use of DCAC was 
suggested. When only recent data is available for a stock that has been fully exploited for the 
duration of data collection (i.e., stable catch and effort), the natural mortality-based approach is 
recommended. When no other options are applicable, the scalar approach should be used. 

4 OTHER FRAMEWORKS FOR DATA POOR FISHERIES ASSESSMENTS 

4.1 PRODUCTIVITY AND SUSCEPTIBILITY ANALYSIS (PSA) 

Productivity and Susceptibility Analysis (PSA) is a priority-setting framework in which species of 
concern are ranked based on two characteristics: their susceptibility to capture and mortality, 
and their productivity (i.e., their capacity to recover after depletion) (Stobutzki et al. 2001).  

Susceptibility is defined by criteria such as catchability, post-handling survival, and range 
overlap with the fishery. Productivity is defined by criteria such as maximum size, number of 
eggs produced, and probability of breeding before capture. In one case, a quantitative measure 
of productivity was used (Simpfendorfer et al. 2008, section 5.4). See Table 3 for an example 
set of criteria for each characteristic. Each criterion is given a ranking from 1 to 3, with 1 relating 
to high productivity or low susceptibility (i.e., low risk) and 3 relating to low productivity or high 
susceptibility (i.e., high risk).  Each criterion is given an importance score based on expert 
opinion, and the total score for each characteristic is the weighted average of that 
characteristic’s associated criteria.   

 
𝑆𝑖 =

∑ 𝑤𝑗𝑅𝑖𝑛
𝑗=1

∑ 𝑤𝑗𝑛
𝑗=1

 
(55) 

Where Si is the total susceptibility or productivity ranks for species i, wj is the weighting for 
criterion j, Ri is the rank of species i for criterion j, and n is the number of criteria on each axis 
(Stobutzki et al. 2001). The productivity and susceptibility scores are then plotted on an x-y axis, 
and the distance to the origin can be used as an index of relative risk.  See Figure 2 as an 
example. 

Productivity and Susceptibility Analyses have been widely applied in Australia (Stobutzki et al. 
2001; 2002) and the U.S. (Patrick et al. 2009) for data poor situations, and have also been 
integrated as part of other frameworks, such as Ecological Risk Assessment for the Effects of 
Fishing, ERAEF (Hobday et al. 2011).  
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Table 3.Criteria used to assess susceptibility and productivity (recovery) for bycatch species in trawling 
(redrawn from Stobutzki et al. 2001).

 

PSA does not provide a quantitative estimate of a reference point that can be used as a 
biological removal target; it is primarily a tool to quickly rate risk in data-poor populations so that 
further attention may be focused on those species which are under the highest risk. It does 
require expert opinion in order to assign weighting of each criterion and to score subjective 
criteria. As such, estimates of removal rates and catchability are highly subjective and prone to 
bias (Stobutzki et al. 2001). The NOAA’s Fisheries Toolbox developed by the National Marine 
Fisheries Service includes a program for performing PSA assessments 
(http://nft.nefsc.noaa.gov/Download.html). 

 

Criteria score   Weighting Rank

1 2 3
Susceptibilit y

Water column position 3 Demersal or benthic Benthopelagic Pelagic

Preferred habitat 3 Soft or muddy sediments or 
prawn trawl grounds

Soft or muddy sediments but also 
other habitats (e.g. reefs and 
estuaries)

Habitats outside prawn 
trawl grounds

Survival 3 Probability of survival ≤ 33.3% 33.3% < probability of survival ≤ 
66.6%

Probability of survival > 
66.6%

Range 2 Species range ≤ 3 fishery regions 3 fishery regions < species range 
≤ 6 fishery regions

Species range > 6 fishery 
regions

Day/night catchability 2 Higher catch rate at night No difference between night and 
day

Higher catch rate in the day

Diet 2 Known, or are able to feed on 
commercial prawns

Not known to feed on commercial 
prawns but feeds on other benthic 
or demersal organisms

Feeds on pelagic organisms

Depth range 1 Less than 40 m Not applicable Deeper than 40 m

Recovery

3 Probability of breeding before 
capture < 50%

Probability of breeding before 
capture not significantly different 

 

Probability of breeding 
before capture > 50%

3 Maximum size < 1066 mm 813 mm < maximum size ≤ 1066 Maximum size < 813 mm

3 Removal rate > 33.3% 33.3% < removal rate ≤ 66.6% 66.6% ≤ removal rate

2 Bear live young or brood young Guard eggs and/or young Broadcast spawners

1 Hermaphrodites Not applicable Dioecious

1 Mortality index > 3.44 1.88 < mortality index ≤ 3.44 Mortality index ≤ 1.88

Probability of breeding

Hermaphroditism

Mortality index

Reproductive strategy

Removal rate

Maximum size

http://nft.nefsc.noaa.gov/Download.html
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Figure 2.Scatter plot of a Productivity and Susceptibility analysis (PSA) where productivity is ranked in the 
x-axis and susceptibility in the y-axis. (From Stobutzki et al. 2001). 

4.2 SUSTAINABILITY ASSESSMENT FOR FISHING EFFECTS (SAFE) 

The Sustainability Assessment for Fishing Effects (SAFE) is a quantitative approach developed 
by Zhou and Griffiths (2008) which estimates fishing impacts using presence-absence survey 
data and compares them with life history-based reference points. The SAFE approach is 
designed for data-poor fisheries and has been used to assess the status of trawl fisheries in 
northern Australia (Zhou et al 2009). 

 The first part of this model provides the likelihood of total abundance NF in the fished (F = 1) 
and unfished (F= 0) areas of within a given region. The probability of capturing one or more 
individuals D is: 
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(56) 

where i is each surveyed grid, mi is the number of surveys on grid i, ni is the number of those 
surveys a species has been captured in (so ni ≤ mi) AF is the size of area F of the study region, ai 
the size of area surveyed in grid i, C1 the total number of grids where ni> 0, and C0 is the total 
number of grids where ni = 0. Thus, the parameters NF and D can be solved by maximizing the 
likelihood of the equation above (56). When multiple bioregions are surveyed, this analysis is 
repeated separately for each one to obtain a region-specific value of NF, or NF,R. In situations 
where multiple fishing gears are used, the different capture probabilities for any given species 
were incorporated using a logistic model: 

 𝐷 =
1

e−(𝛼+𝜷𝐌+𝜸𝐇) + 1
 (57) 

where vector M is the sampling gear type, vector H is the area covered by each gear in the gird, 
and α, vectors β and γ are model parameters.  

By comparing the relative populations of each species within fished and unfished areas, the 
proportion of a species’ population that could potentially be impacted by fishing across regions 
in the area of study (PN), is estimated: 

 
𝑃𝑁 =

∑ 𝑁𝑅,𝐹=1
𝑟
𝑅=1

∑ ∑ 𝑁𝑅,𝐹1
𝐹=0

𝑟
𝑅=1

 
(58) 

where R refers to each one of the r number of regions, and F= 1 and F= 0 refer to the fished and 
unfished areas within each region, respectively. 

After all the previous calculations have been done, the fishing induced mortality rate (u) which is 
computed as a yearly probability, can be calculated by 

 𝑢 = 𝑃𝑁𝑞𝑁(1− 𝐸) (59) 

Where qN is the catch rate of the species with N abundance (i.e., the probability of a fish 
entering the net), and E is the species-specific probability of escapement, obtained from 
published values. Thus using equation (4) it can be turned into instantaneous fishing mortality F 
by u = 1 – e-F. 

The second part of the SAFE framework compares the calculated F values with proxies of Fcrash. 
Both methods to obtain a proxy of Fcrash explained in section 3.2 (equations 31 and 32) are used, 
from which the lowest value of Fcrash was picked as the comparison point. 

The SAFE method does require large amounts of data in the form of survey data, and detailed 
information on fishing effort and location. However, the method can be applied to any stock from 
which there are surveys both inside and outside regularly fished grounds, assuming that the 
stock has similar recruitment and growth trajectories in both areas. An important note is that the 
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proxies used for comparing fishing mortalities have large margins of error, thus findings can be 
confounded by the quality of these reference points. 

4.3 ECOLOGICAL RISK ASSESSMENT FOR THE EFFECTS OF FISHING (ERAEF) 

Ecological Risk Assessment for the Effects of Fishing (ERAEF) is a triage framework based on 
ecosystem-based fisheries management (EBFM) whose hierarchical structure aids in its 
application in data-poor situations. It accounts for the effects of indirect factors (e.g., habitat 
destruction, bycatch, ecological interactions) on fish populations. The ERAEF framework 
assesses them with increasingly more quantitative tools and decreasing uncertainty when 
specific units in the fishery have been classified as of concern.   

The framework consists of four levels of analysis, ranging from mostly qualitative (Scoping) to 
fully quantitative (Level 3).  It assesses the effects of fishing in the following five components: 
target species; byproduct and bycatch species; threatened, endangered and protected species; 
habitats; and ecological communities. The hierarchical framework is such that only components 
assessed as medium or high risk at any given level are assessed in the next level, thus 
reducing the time and resources used to assess the fishery. The first step in this framework is 
Scoping, which is based primarily on input from stakeholders and expert opinion in order to 
identify management objectives for each component in the system. After those have been set, 
Level 1 consists of a “plausible worst case” approach, where for each component the worst 
case scenario is selected and assessed, thus drastically reducing assessment time. In Level 2, 
components that were classified as medium or high risk at Level 1 are assessed using proxies 
for productivity and susceptibility (Productivity and Susceptibility Analysis, PSA) based on 
methodology by Stobutzki et al. (2001) and described in section 5.1.  As previously, only units 
that score medium or high risk are assessed in Level 3, where a fully quantitative assessment is 
undertaken using the Sustainability Assessment for Fishing Effects (SAFE) method by Zhou and 
Griffiths (2008) which is described in section 5.2. 

These models can be applied to any taxa. By definition, they assess all the species or stocks 
involved in a fishery as well as their associated ecological communities. For example, while 
assessing any given tuna long-line fishery, the framework would also take into account the 
effects on all potential bycatch species groups, such as sharks, seabirds, and turtles.  

As mentioned above, the hierarchical nature of the ERAEF framework allows its implementation 
even in data poor situations. In such cases, it implements a precautionary approach to 
identifying and ranking risk by assuming high risk when data are absent or there is not 
information to determine the contrary (Hobday et al. 2011). The ERAEF methodology has been 
widely used in fisheries managed by the Australian Government (Hobday et al. 2011). 

The main strengths of the ERAEF framework lie in its cost effectiveness, flexibility, and 
precautionary approach to risk. It is cost effective as low risk units are quickly evaluated with 
very simple methods, and thus do not require more timely evaluation (and data collection) 
further in the analysis. The ERAEF framework is customizable to specific fisheries, thus each 
step can be changed to suit the requirements for meeting the objectives as long as the 
hierarchy starting from simpler to complex (and more data-hungry) is maintained. The ERAEF 
framework is explicitly precautionary as it assigns high risk when information is lacking. It is also 
designed to be biased toward producing false positives (assigning high risk in cases where it is 
actually low) rather than false negatives.  

There are a number of caveats that need to be considered when using the ERAEF framework. 
Due to its scope, terminology, and the use of multiple levels of assessment, the ERAEF 
framework might take some time to become familiar with. Another issue is the subjectiveness of 
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the first levels of assessment. Different stakeholders might come up with different risk scores in 
Level 1 due to its qualitative nature. Thoroughness of identifying all potential activities in Level 1 
might seem redundant for some stakeholders as they feel like they might already know that a 
number of them pose very little risk. Level 2 uses proxies of productivity, rather than productivity 
estimates, and ignores some current management measures that when considered, might result 
in different risk scores. 

For any given bycatch species, if there are multiple sources and/or fisheries impacting the stock 
then the ERAEF framework might not be able to identify risk accurately, particularly if they are 
assessed as low risk in Levels 1 or 2.For example, if risk is assessed as low for a bycatch 
species for a given fishery, but the species is also part of the bycatch of a number of other 
fisheries, then the compound effect of all fisheries on the stock might not be assessed 
accurately using ERAEF. Thus there is a need for integrating assessments across fisheries and 
components, which is a work in progress (Hobday et al. 2011). 

4.4 SIMPFENDORFER ET AL. (2008) ERA FRAMEWORK 

Based on the work done by Braccini et al. (2006) and Hobday et al. (2007) on Ecological Risk 
Assessment (ERA), Simpfendorfer et al. (2008) created a quick framework to assess risk of 
data-poor shark species which is basically a quantitative version of the PSA. The productivity 
axis uses the intrinsic rate of increase which can be calculated from the Au and Smith’s (1998) 
equation, matrix projection models, Fextinct, or any proxy for Fcrash. The susceptibility axis was still 
qualitative, and was ranked in terms of availability (overlap with fishery), encounterability (expert 
judgment), selectivity (contrasting expected length distributions with observed catchability), and 
post-capture mortality, if known. In this case, the total risk score was quantified as the Euclidean 
distance between a fixed point of low risk (i.e., a point with susceptibility score = 0 and an high 
productivity score) and the position of each species in a plot with productivity and susceptibility 
in each axis. 

For a more holistic comparison aiming at assessing similarities between species, Simpfendorfer 
et al. (2008) calculated the inflection point of the population growth curve when plotted against 
population size as a fraction of B0(R) (Fowler 1988), which is a proxy for the Bmsy/B0 ratio. There 
is an empirical interspecific relationship between R and the product of the intrinsic rate of 
increase of a population (r) and generation time (T, which in most simple terms is the mid-point 
between age at first reproduction and maximum age): 

 𝑅 = 0.633− 0.187 log (𝑟𝑇) (60) 

A third indicator of relative status was obtained by assigning a value from 0 to 1 based on the 
IUCN Red List Status of each species (Critically Endangered = 1, Endangered = 0.8, Vulnerable 
= 0.6, Data Deficient = 0.5, Near Threatened = 0.4 and Least Concern = 0.2). For precautionary 
purposes, Data Deficient species were classified in the mid-range of values. The ERA score, R 
values, and IUCN Red List Assessment scores just mentioned were combined in a non-metric 
multidimensional scaling plot (nMDS) in order to further compare the risk status of the species 
examined and observe any patterns relating to their risk status. As with PSA, this framework 
only provides a relative comparison of risk between species studied and is susceptible to large 
uncertainties in the ranking of qualitative assessments. Uncertainties in the estimation of r are 
discussed in previous sections. 
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4.5 EXTENT OF DECLINE 

Another method for assessing relative risk of stocks when only an index of abundance is 
available is by using the estimated extent of decline, standardized by generation time (Mace 
and Lande 1991). This method uses the difference is abundance between a standardized time 
span: three generation time lengths when available (thus maximum age needs to be known), 
and if not available, a 10 year time period. This methodology is used by the International Union 
for the Conservation of Nature (IUCN) in their Red List assessments. It allows for rapid 
comparison of species which have been declining in abundance. Standardizing by generation 
time allows for comparison across species: longer lived species will take longer to show a 
proportional decrease than a shorter species with faster turnover rates. 

Generally, steeper rates of decline represent greater risk and need for management 
intervention; hence this approach can be judged according to the reference direction and 
change in direction (Jennings and Dulvy 2005). Thresholds that have been used to classify 
increasing levels of concern are available for exploited fishes from IUCN, Committee on the 
Status of Endangered Wildlife and the American Fisheries Society (Musick 1999, DFO 2007, 
IUCN 2010) and are increasingly being subject to performance testing (Dulvy et al. 2005, Rice 
and Legacé 2007, Porszt et al. in press). The relatively low data requirements (index of 
abundance over a period of time, e.g., CPUE, and maximum age) allows for a simple 
comparative analysis of species in order to identify those species requiring greatest priority. 

4.6 POORFISH 

POORFISH is a collaborative effort to create Bayesian belief networks and subsequent stock 
and biomass dynamic models for data-poor stocks in the European Union. It provides a set of 
guidelines for assessment and management of data-poor fisheries. Their methodologies are 
based on well-known stock assessment tools which are parameterized using a probabilistic 
rather than a frequentist approach. Input probability distributions (known as priors in Bayesian 
frameworks) are assigned to parameters in the stock assessment. In data-poor situations, 
probability distributions that contain only limited information can be included. 

The POORFISH project did not build any specific tools or models for fisheries management; 
instead they provided case specific examples of Bayesian implementation in surplus production 
models, Virtual Population Analyses (VPA), and a range of other decision-making scenarios. 
The POORFISH project used well-known stock assessment tools and applied them using 
Bayesian analyses made for each particular scenario studied. 

Bayesian approaches are strongly dependent on the belief network that is used as input (priors), 
thus expert knowledge is require in order to assess the validity and effect of priors on the 
results. They are however more difficult to implement, and usually need to be tailor made for 
each assessment, and are suitable for either full stock assessments in which uncertainty is to be 
considered, or stocks which are just short of having enough data for a complete stock 
assessment. In the latter case prior distributions can be assigned to those knowledge gaps.  
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