
service providers, policies that target the
protection of whole biotic communities in
agricultural ecosystems, rather than just
one or a few species, are expected to be
more efficient in meeting growing
demands for produce while maintaining
multi-functional agricultural landscapes.
Such measures do not necessarily com-
pete with farmers’ profit [9]. They can
even be established in areas with lower
yield potential but, sometimes, higher
conservation value such as river margins
or areas with steep slopes. Indeed, in
many cases agricultural productivity
and/or profit increase as a result of
enhanced ecosystem services [3,4,17].
In Table S1, we provide 24 examples of
our ten policy targets across at least 14
countries and the EU (27 member states).
These examples illustrate the diversity of
possible implementation routes. The
options available to a particular group of
policymakers depend on the political, his-
toric, and environmental context and also
on how the target is interpreted, in terms
of its precise objective, scale, and magni-
tude. Given the variety of possible imple-
mentation routes and outcomes, it is
important that policies implemented in
support of ecological intensification
include clearly stated objectives, with
measurable targets, against which each
policy can regularly be evaluated. In our
view, the most supportive policies for
ecological intensification will consider
agriculture as a system that addresses
national food security and provides well-
being to rural populations, through invest-
ment in ecological infrastructure and
knowledge management.
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Determined by
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E. Donaldson,1,3 and
Caroline E.R. Lehmann1,4,*

Fire and mammalian grazers both
consume grasses, and feedbacks
between grass species, their func-
tional traits, and consumers have
profound effects on grassy ecosys-
tem structure worldwide, such that
savannaandgrasslandstatesdeter-
mined by fire or grazing can be con-
sidered alternate states. These
parallel savanna–forest alternate
states[83_TD$DIFF], which likewise have myriad
cascading ecosystem impacts.
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Positive feedbacks can maintain ecosys-
tems in alternate states, where their struc-
ture and function conform to a stable, yet
dynamic, ecological regime [1]. Savanna–
forest mosaics provide a well-known
example of alternate stable states [2],
and, because themechanisms that cause
shifts from savanna to forest and vice
versa are different, the likelihood, rate,
and ecological pathway of transitions
are different in each direction. This is evi-
dence for hysteresis (an important

property of alternate stable states) and
means that initial conditions and lag
effects shape how regime shifts occur [1].

Grassy ecosystems also have alternate sta-
blestates (Box1).Withingrasses (Poaceae),
a family of over 11 000 species, there are
numerous life history strategies [3]; yet two
strategies stand out for their remarkable
ability todrive the ‘consumerregime’ inparts
of a grassland or savanna landscape
towards a fire- or grazer-dominated state.

On theonehand, therearegrasseswith trait
combinations that make them highly flam-
mable but which also increase their domi-
nance under frequent burning [4]; these
‘fire-grasses’ are important to maintain the
savanna–forest boundary [5]. On the other
hand, ‘grazing-lawn’ grasses are highly pal-
atable and thus sought after by grazers, but
the proliferation of these grasses is pro-
moted by regular grazing [6]. These positive
feedbacksmake itpossible forshifts ingrass
community composition to profoundly

Box 1. Alternate Stable States in Grassland Communities

Grass biomass increases with productivity (Figure I; black diagonal), but departures occur when positive feedbacks with fire or grazing entrain communities into tall
stature fire-grass (orange line) [4] or low stature grazing-lawn (green line) [6] states. These positive feedbacks arise because the grass traits that ‘attract’ fire or grazers
are associated with traits that also promote competitive ability under these different consumer regimes. This confers stability to each state, with their resilience
enhanced by the opposing nature of the traits that attract fire versus grazers: fire-grasses are relatively unpalatable and grazing-lawns are nonflammable. However,
critical bifurcations occur when productivity changes: at F1 grass fuel continuity becomes too patchy to carry fires and at F2 grazer populations decline due to the low
quality of dry season reserves outside of lawns. External factors can also precipitate transitions by reducing the amount of fire (e.g., fire suppression) or grazers (e.g.,
poaching or disease). Hysteresis occurs due to the different mechanisms that drive state transitions: fire-grasses shade out grazing-lawn grasses, while trampling or
concentrated postfire grazing can allow grazing-lawn species to invade the fire-grass state. Transitions from grazing-lawn to fire-grass states (orange [80_TD$DIFF]broken lines)
occur fastest at high productivity, while the slower, more stochastic fire-grass to grazing-lawn transitions (green [80_TD$DIFF]broken lines) are perhaps most likely at intermediate
productivity, where grazers are abundant but the rate of reversion to the fire-grass state is moderate.
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Figure I. Alternate Grassland States. Conceptual diagram of alternate fire-grass (orange unbroken line) and grazing-lawn (green unbroken line) stable states
along a productivity gradient. Each state is stabilized by positive feedbacks (filled orange and green arrows) with fire and grazers, respectively, a dynamic underpinned
by opposing C:N ratios and leaf moisture traits amongst others. Transitions between states (broken lines) occur when shifts in rainfall exceed critical bifurcation points
at F1 or F2, or when external factors precipitate changes. Shading represents grasses with higher palatability (green) or flammability (orange), respectively. The black
diagonal line represents the general linear increase in grass biomass with annual net primary production.
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affect the ecosystem at large: whether a
system is fire- or grazer-driven has implica-
tions for soil carbon, nutrient cycling, plant
community composition, biodiversity, and
habitat structure, among other cascading
effects [4,7,8].

Traits and Positive Feedbacks
Light competition underpins the dynamic
in grazing-lawn or fire-grass community
states. Grazing-lawn grasses are short-
statured, often laterally spreading, and
vulnerable to being shaded out by the
invasion of tall grasses [6–8]. Regular
grazing is essential to maintain high
light-levels. Grazing-lawns are attractive
to grazers because bites consist mostly
of densely packed leaf material (i.e., with
low C:N ratios and high moisture), which
allows for efficient intake of nutritious
forage while avoiding low quality stem
material; and therein lies the trick: by pro-
tecting stem material, roots, and buds,
grazing-lawns continue growing largely
unchecked by grazing, and are fierce
competitors for space and resources
when light is not limiting [6,8].

Fire-grasses outcompete other grasses
by appropriating the light environment
[4]. Their tall, upright stature requires high
C:N ratios providing structural support,
and this, along with high tannin levels,
slows decomposition rates and results
in the accumulation of dead biomass
[3,9]. Dead biomass obstructs light at
ground level while accumulation of a
low moisture-dense fuel-bed supports
frequent fire [10]. Fire-grasses are well
equipped to survive frequent fires, with
meristems insulated by layered leaf
sheaths and a densely packed plant
base. To complete this feedback loop,
fire-grasses have rapid postfire regrowth
facilitated by high photosynthetic rates,
providing little opportunity for other
grasses to establish [10]. While fire-grass
and grazing-lawn feedbacks have long
been established [4,6], their opposing

nature and implications for alternate sta-
ble states have not been elaborated.

Contrasting Grazing-Lawn versus
Fire-Grass and Savanna versus
Forest Alternate Stable States
The dynamics of grazing-lawn versus fire-
grass alternate states share many proper-
ties with savanna versus forest alternate
states (Figure1), despite fundamental differ-
ences in how each is formulated. Grazing-
lawn versus fire-grass states are under-
pinned by trait differences within the same
plant life form,witheachstatedependenton
positive feedbacks with a consumer (i.e.,
grazing versus fire). By contrast, savanna
versus forest states represent a shift from a
tree-grass mixture maintained by fire, to a
tree-dominated, resource-limited system (i.
e., light competition) [5]. Unsurprisingly,
savanna and forest trees require markedly
different traits to meet the competitive
demands of each system [5].

Fire-grasses and forest trees are both the
taller vegetation state, strong competitors
for light, and with likely lower below-
ground investment [10]. Accordingly,
these vegetation states tend to dominate
under more productive conditions, but
are able to expand into grazing-lawns
or savanna should grazers or fire be
absent for long enough [2,7]. However,
resource limitation is likely to constrain
how far down the productivity gradient
these life history strategies remain domi-
nant. As productivity decreases, grass
biomass production decreases, such that
fire frequency declines because fuel loads
are insufficient for frequent fire, disrupting
the fire–grass feedback.

By contrast, grazing-lawn and savanna
vegetation statesdominateunder lesspro-
ductive conditions and depend on grazers
and fire, respectively, to maintain an open
light environment [2,6]. Opportunities to
expand into fire-grass communities or for-
ests occur during brief windows when
these taller vegetation types become

palatable or flammable: fire-grasses are
palatable when regrowing after being
burned, and forests become flammable
during droughts or unusually hot, dry,
windy weather conditions. As productivity
increases, grazing-lawns require more fre-
quent grazing, and savannas require more
frequent fires, in order to persist. However,
associated shifts in forage and fuel proper-
ties ultimately constrain how far up the
productivity gradient each can occur:
grazer populations become limited by
declining grass quality outside of grazing-
lawns [see below; [84_TD$DIFF]see Figure I in Box 1 (F2)]
[8], and fire is excluded in wet regions
because fuels remain green and are never
dry enough to burn [11].

Implications of Spatial and
Temporal Constraints on Fire
versus Grazers
Fire and grazers are subject to different
spatial and temporal constraints, which
has implications for the extent and config-
urationofecosystemstates ina landscape.
Forexample,while grazerscansimplywalk
through unsuitable habitats, fires can be
halted by fuel continuity barriers such as
roads, and indeed, short-grazed grasses.
However, unlike fires, grazers need to sur-
vive year-round. Consequently, when
grasses stop growing in the dry season,
grazers in seasonal environments rely on
taller grass reserves outside of grazing-
lawns to meet their intake requirements
[8]. Grazer populations thus can be limited
by grass quality and quantity outside of
grazing-lawns (see above).

These differences have consequences for
the proportion of landscape that can be
maintained in a fire- or grazer-determined
state. When conditions are conducive to
fire, and if barriers to spread are few, fire
can convert entire landscapes into a fire-
grass state [4]. However, the maximum
proportion of grazing-lawn is contingent
upon adequate dry season resources to
support grazers [8]. These grazing-lawns
can be configured as small, isolated
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patches near water or on nutrient hotspots
like termite mounds, or coalesced into
large areas that offer additional benefits
such as improved predator detectability
[8]. The extreme scenario occurs where
grazers undertake long-distance migra-
tions between dry- and wet-season
ranges, allowing for the formation of vast
grazing-lawns (e.g., the short-grass plains
of the Serengeti, which support over a mil-
lion wildebeest in the wet season and
almost none in the main dry season [12]).
Seasonality should thus be an important
predictor of lawn extent in an ecosystem,
withagreaterproportionof lawnpossible in
less seasonal systems, or where animals
can migrate to track grass phenology.

In thesavanna–forest literature, spatial bar-
riers to fire spread have been discussed at
two scales: at local scale the forest bound-
ary prevents fire spread if tree density is
high enough to reduce surface fuel flam-
mability, while at landscape scale, fire is
excluded when forest (nonflammable)
patches are extensive enough to prevent
fire percolation through the landscape
[2,5]. Similarly, at local scale grazing-lawns
have traits that make them nonflammable,
while at landscape scale grazers can
effectively switch-off fire once grazing-
lawn extent exceeds the threshold to fire
spread [12]. Enhancing our mechanistic

understanding of the distribution of
ecosystem states along the [85_TD$DIFF]continuum
from grazing-lawn savanna to fire-grass
savanna to forest states will require elabo-
ration of the feedbacks to fire and grazer
population size at both scales. What
appears to be clear, however, is that
grasses and their traits are fundamental
to orchestrating dynamics in these con-
sumer-controlled ecosystems.
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