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A. Sockeye salmon life history and parameterization of the model 16 

 About 94% of adult sockeye salmon (Oncorhynchus nerka) from the Fraser River, British 17 

Columbia, Canada, reproduce and die at four years of age. Over six decades of abundance 18 

records from the Pacific Salmon Commission (Vancouver, B.C.; www.psc.org) document the 19 

high temporal variation in abundance of these populations. In some populations, the predominant 20 

4-year life history has created four distinct "cycle lines", with little gene flow among the lines 21 

(Ricker 1997). In each 4-year period, one line ("dominant" cycle line) tends to have much higher 22 

abundance than the other three lines. The 4-year life span and cycle-line features led us to 23 

calculate some indicators of cycle-line-specific values and mean abundances across every 4 years 24 

(Table 2 of the main text and Supporting Information (SI) part B below).  25 

 We based the simulation model's parameter values on realistic ranges observed for sockeye 26 

salmon. To create simulations so that some populations were declining and some were not, we 27 

used a normally distributed a parameter in equation 1, with a mean of 1 and a standard deviation 28 

of 0.3 (~N(1,0.3), but constrained it to not drop below zero). Our a parameter values capture 29 

realistic a values but with more emphasis on the lower end of the productivity values that have 30 

been observed, which is the set of situations in which we are interested (i.e., when populations 31 
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are declining). As well, we explored different parameter values for the mean of a (1, 1.4, 1.8) 32 

and b (1/100000, 1/200000, 1/400000) to see whether the rank order of indicators (based on their 33 

reliability) was sensitive to these changes. 34 

 To start each simulation, the initial spawning population abundances were drawn randomly 35 

from a uniform distribution between 20,000 and 80,000 fish for each of the four cycle lines (as in 36 

Dorner et al. 2009). The model then simulated a 3-generation (12-year) initialization period, a 37 

52-year evaluation period, which is comparable to the duration of historical time series available 38 

for Fraser River sockeye salmon (Porszt et al. 2012), and a subsequent period of 12 years.  39 

 Process variation changed randomly for every year, t, of each Monte Carlo trial through a 40 

multiplicative error term, te
 (Hilborn & Walters 1992), where εt is a lag-1-year autocorrelated 41 

process (equation 2 in the main text) with an error term ut that is normally distributed with a 42 

mean of zero and a variance u
2
, i.e., ut ~ N(0, u

2
). Because the abundance with the inclusion of 43 

process variation still represents the "true" number of spawners, this error is propagated 44 

throughout the model and is reflected in all periods of the time series (i.e., the abundance of 45 

spawners in time t is based on the abundance of spawners in time t-4 with process variation 46 

included).  47 

 Observation error reflects the apparent interannual variability in abundance due to 48 

imprecision and inadvertent bias in estimates of population size, such as counting error and 49 

sampling error (Paulsen et al. 2007, Rand 2011, Wilson et al. 2011). Observation error was 50 

added to the model (equation 3 of the main text) with a multiplicative error term e
v
, where v was 51 

normally distributed with a mean of zero and a variance of σv
2
 (Walters & Ludwig 1981; Hilborn 52 

& Walters 1992). The level of observation error varied stochastically for each year in each 53 

Monte Carlo trial, but was added independently at each simulation step and thus did not 54 
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propagate through the model. That is, the abundance of spawners in time t was based on the 55 

"true" abundance of spawners in time t-4 with process variation included but without observation 56 

error (Wilson et al. 2011).  57 

 The values of process variation (σu
2
=0.01, 0.05, 0.1, 0.3, 0.5) and observation error (σv

2
=0, 58 

0.05, 0.1, 0.3, 0.5) that we explored encompassed most observed ranges of these parameters.  59 

Dorner et al. (2009) used a combined error variance (process variation plus observation error) of 60 

0.55 so that their simulated dynamics approximated the total empirically observed interannual 61 

variability in the 37 North American sockeye stocks that they used. Peterman and Dorner (2012) 62 

used a state-space Ricker model to separately estimate process variance and observation-error 63 

variance for the 64 sockeye populations that they analyzed and found medians of 0.26 for 64 

process variation, σu
2
, (0.13 to 0.6 for the 25th and 75th percentiles) and 0.04 for observation 65 

error, σv
2
, (0.01 to 0.12 for the 25th to 75th percentiles) (Brigitte Dorner, personal 66 

communication, 10 Dec. 2010, bdorner@driftwoodcove.ca). The full range of estimates extended 67 

beyond those percentile values. A recent study by Connors et al. (2014) also used a state-space 68 

model to separately estimate process variance and observation-error variance for 627 abundance 69 

time series of a wide variety of animal species in the Global Population Dynamics Database 70 

(GPDD). However, they used a Gompertz model instead of our Ricker model.  Nevertheless, 71 

broadly speaking, their estimates of process variance and observation-error variance are likely to 72 

be roughly comparable to Ricker-derived values. They found medians of σu
2
=0.03 for process 73 

variation (from 0.01 to 0.16 for the 25th to 75th percentiles) and σv
2
=0.16 for observation error 74 

(from 0.02 to 0.5 for the 25th to 75th percentiles).  In their analysis of 1386 time series of 75 

abundances for plants as well as animal species in the GPDD, Wilson et al. (2011) also used a 76 

Gompertz-based state-space model and estimated the 25 to 75th percentiles of process variance 77 

to be 0.004 to 0.23 (median 0.03) and observation-error variance to be 0.002 to 0.1 (median 0.03).  78 
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Thus, these empirically estimated parameter values were within the ranges examined in our 79 

simulations.    80 

 Estimates of lag-1 temporal autocorrelation, Φ, for North American sockeye salmon 81 

populations range between -0.47 and +0.79 (mean of 0.22) (Korman et al. 1995 for 30 82 

populations) and -0.21 to +0.77 (mean of 0.31) for the 64 sockeye populations analyzed in 83 

Peterman and Dorner (2012) (Brigitte Dorner, personal communication, 11 Feb. 2014, 84 

bdorner@driftwoodcove.ca).  The range for Φ that we explored (-0.5 to +0.75) essentially covers 85 

those observed ranges.  For populations other than sockeye salmon, Connors et al. (2014) found 86 

that 57% of the time series of abundances of animals in the GPDD had zero lag-1 autocorrelation 87 

in process variation; the other species ranged from -0.4 to +0.95.  88 

 Thus, our sensitivity analyses across a wide range of values of process variation, 89 

autocorrelation in that variation, and observation error evaluated how robust the different 90 

indicators of population decline were to various situations that potentially reflect real-world 91 

conditions. 92 

 93 

B. Details of the 20 indicators of population decline  94 

 Our analysis expands upon the Porszt et al. (2012) retrospective analysis of past observed 95 

data, which examined many of the same indicators as we did. However, their empirically based 96 

analysis only evaluated indicators over the single set of observed historical events. In contrast, 97 

our simulation analysis is much broader and more comprehensive than Porszt et al. (2012) in that 98 

we explore a wide range of plausible future sequences of events as delineated by the process 99 

variation and observation error that we included. 100 

 Many organizations, such as the Canadian Committee on the Status of Endangered 101 

Wildlife in Canada (COSEWIC 2011), CITES, U.S. EPA, and others use indicators similar to 102 
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some of those listed below. The following indicators were calculated during the "evaluation 103 

period" (Figure 1a). 104 

1. Percent decline in spawner abundance over the most recent three generations (i.e., 12 years in 105 

the case of Fraser River Sockeye salmon) prior to each assessment year, estimated by 106 

exponentiation of best-fit values from the robust regression of the annual values for 107 

loge(unsmoothed abundance) on year. Robust regression reduces the influence of outliers 108 

(Venables & Ripley 2002). In other words, the rate of decline indicators (#1 and #2) 109 

examine all of the possible 3-generation periods over the evaluation period of the time 110 

series; they calculate the rate of decline in 12-year blocks of years 13-24, 14-25, 15-26, … 111 

up through years 53-64. In comparison, the indicators of historical extent of decline look at 112 

years 13-24, 13-25, 13-26, … up through 13-64. 113 

2. Same as indicator #1 except we used smoothed (4-year running mean) abundances rather than 114 

unsmoothed abundances.  115 

3. Percent decline between abundance in first year of the data series and abundance in a later 116 

assessment year (at least 12 years later), using values estimated by exponentiation of best-117 

fit values from the robust regression of loge(unsmoothed abundance) on years.  118 

4. Same as indicator #3 except we used smoothed (4-year running mean) abundances rather than 119 

unsmoothed abundances.  120 

5. Same as indicator #3 except we used data from the first corresponding cycle year up to the 121 

year of analysis (e.g., dominant compared with another dominant cycle year). Many 122 

populations of Fraser River sockeye salmon show four distinct successive "cycle lines" 123 

arising from the 4-year life span, with little gene flow among the lines (Ricker 1997; SI 124 

part A). Therefore, for "cycle-line" indicators, we calculated trends in abundance by "cycle 125 
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line", that is by only using data from every fourth year, e.g., years 1, 5, 9, etc. for cycle-line 126 

1, and years 2, 6, 10, etc. for cycle-line 2, etc. 127 

6. Same as indicator #4 except we used data from the first corresponding cycle year up to the 128 

year of analysis (e.g., dominant compared with another dominant cycle year).  129 

7. Same as indicator #3 except we used the maximum unsmoothed annual abundance anywhere 130 

in the time series as the historical baseline, instead of abundance in the first year.  131 

8. Same as indicator #7 except we used smoothed (4-year running mean) abundances rather than 132 

unsmoothed abundances.  133 

9. Percent decline between the geometric mean of raw abundances of the first 4-year generation 134 

and the geometric mean of another generation being assessed, where generations move one 135 

year at a time in sliding windows.  136 

10. Same as indicator #9 except we used smoothed (4-year running mean) rather than 137 

unsmoothed abundances.  138 

11. Same as indicator #9 except generations moved in 4-year blocks with no overlap of years 139 

(i.e., status only assessed every four years).  140 

12. Same as indicator #10 except generations moved in 4-year blocks with no overlap of years.  141 

13. Same as indicator #9 except for the historical baseline, we used the maximum geometric 142 

mean abundance of any three-generation (12-year) period in the time series.  143 

14. Same as indicator #13 except we used smoothed (4-year running mean) rather than 144 

unsmoothed abundances.  145 

15. Same as indicator #13 except generations moved in 4-year blocks with no overlap of years.  146 

16. Same as indicator #15 except we used smoothed (4-year running mean) rather than 147 

unsmoothed abundances.  148 



 7 

17. Percent decline between the geometric mean raw abundances of the first 4-year generation 149 

and the raw abundance in an assessment year starting at least 12 years later.  150 

18. Same as indicator #17, except for the historical baseline we used the maximum geometric 151 

mean abundance of a three-generation (12-year) period that occurred anywhere in the time 152 

series. 153 

19. Same as indicator #3 (decline since the first year in the data set), except we calculated a 154 

three-generation (12-year) rate of decline from the regression. 155 

20. Same as indicator #19 except we used smoothed (4-year running mean) abundances rather 156 

than unsmoothed abundances.  157 

 158 

 For each relevant simulated year of the 13-generation evaluation period, we determined for 159 

each of the 20 indicators whether the indicator classified the current status of the population as 160 

"declining" or "non-declining". To do this, in a set of separate calculations, we compared the 161 

estimated decrease in abundance against various thresholds that delineated "declining"; those 162 

thresholds ranged from 0 to 100% in increments of 1%. A population was classified as 163 

"declining" if the estimated decline was greater than a given threshold shown on the X-axis, but 164 

was classified as "non-declining" if the estimated decline was less than that threshold. For 165 

example, a given population at year 50 would be assessed using indicators of recent rate of 166 

decline, which would calculate a regression over the previous 12 years (years 39-50). If this 167 

regression corresponded to a decline of, say, 40%, then the assessed status at a threshold of 1% 168 

would be classified as “declining” but the assessed status at a threshold of 99% would be 169 

classified as “non-declining”, and so on for thresholds between 0 and 100%. This example 170 

population at year 50 would also be assessed using historical baseline indicators, which would 171 
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calculate a regression on all years since the beginning of the evaluation period (years 13-50). The 172 

decline estimated from this regression would also be compared to thresholds from 0 to 100% in 173 

order to classify the population as “declining” or “non-declining” in each case. This analysis 174 

would be completed for all indicators, for all applicable years, and for each population. 175 

 176 

C. Overall long-term population trend 177 

 To classify this overall long-term status, we first took a robust linear regression of the final 178 

12 years in the time series (i.e., years 65-76; the “subsequent period” in Figure 1b) and found the 179 

mean spawner abundance of the last 4-year generation (i.e., across years 73-76), as estimated 180 

from this regression. We then found the mean spawner abundance at the end of the initialization 181 

period in the same way (i.e., the mean of years 9-12, calculated by robust linear regression of the 182 

first 12 years), and used the percent decline in those mean abundances from the end of the 183 

initialization period to that last generation of the subsequent period as the estimate of the overall 184 

long-term trend in the population.   185 

 We wanted to identify which indicators that were estimated during the "evaluation period" 186 

most reliably reflected the actual simulated long-term trend. Therefore, for the steps in our 187 

estimation of the overall long-term trend, observation error was not included in the initialization 188 

and subsequent periods of the time series; for these periods, the "true" population abundance, 189 

which reflected process variation, was considered as being known for the purposes of our 190 

simulations. 191 

 192 

D. Receiver Operating Characteristic (ROC) analysis 193 

 In medicine, a Receiver Operating Characteristic (ROC) analysis is often used to evaluate 194 

the reliability of diagnostic tests (Hibberd & Cooper 2008). ROC analyses combine into a single 195 
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measure of reliability the true and false positive error rates (which are the complements of the 196 

true and false negative rates, see Table 1 of the main text) produced by a test or indicator across 197 

different classification thresholds. This type of analysis has recently been used in extinction-risk 198 

studies (e.g. Porszt et al. 2012), biogeography to compare statistical models of habitat (Pearce 199 

and Ferrier 2000), and management of invasive species (Baxter and Possingham 2011).  200 

 In our analysis, we combined into a single metric for each decline indicator the true and 201 

false positive rates that were produced across a wide range of thresholds of decline in abundance 202 

for classifying population status.  Specifically, for each threshold (0 to 100% in 1% increments), 203 

the true positive rate (TP/(TP+FN)) was plotted against the false positive rate (FP/(FP+TN)), 204 

which created 101 points and generated an ROC curve (examples in Figure 1c). The resulting 205 

area under the ROC curve (AUC) reflects the ability of a given indicator to correctly distinguish 206 

whether a population is declining; higher AUC values mean a more reliable indicator (Hibberd & 207 

Cooper 2008; Porszt et al. 2012). 208 

 209 

E. Additional results and sensitivity analyses 210 

 This section contains figures of detailed main results for the 20 indicators in our study, as 211 

well as results of sensitivity analyses.  212 

213 
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 214 

Table S1. Tables of the most reliable indicator (numbers defined in Table 2 and SI part B), that 215 

is, the one with the largest area under the ROC curve (AUC), which means the greatest ability to 216 

correctly classify a population's abundance as decreasing or not. Results are shown for different 217 

ratios of weightings (importance of avoidance) placed on rates of false positive (FP) errors to 218 

false negative (FN) errors for different levels of (a) process variation, i.e., environmentally-219 

driven variability in productivity (at observation error σv
2
=0) and (b) observation error (at 220 

process variation σu
2
=0.01), with no temporal autocorrelation in process variation. Analogous 221 

cases with an autocorrelation coefficient of 0.5 are also shown (c and d).  222 

 223 

(a) 

 

Process 

variance 

(σu
2
) 

 

Best indicator if a false positive is x times as 

important to avoid as a false negative 

 

0.20 0.25 0.33 0.50 

x: 

1.0 2.0 3.0 4.0 5.0 

0.01 20 20 20 20 20 20 20 20 4 

0.05 20 20 20 20 20 9 9 6 10 

0.1 20 19 20 20 20 11 11 6 6 

0.3 4 20 20 20 9 7 6 7 7 

0.5 11 10 10 9 4 6 10 8 8 

 224 

225 
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Table S1 226 

 227 

(b)  

 

Observation 

error  

variance 

(σv
2
) 

 

Best indicator if a false positive is x times as 

important to avoid as a false negative 

 

0.20 0.25 0.33 0.50 

x: 

1.0 2.0 3.0 4.0 5.0 

0 20 20 20 20 20 20 20 20 4 

0.05 4 4 4 4 4 4 4 4 7 

0.1 20 4 4 20 4 3 3 4 4 

0.3 4 4 4 4 4 4 4 7 7 

0.5 4 4 4 4 4 4 4 4 4 

  

(c) 

 

Process 

variance 

(σu
2
) 

 

Best indicator if a false positive is x times as 

important to avoid as a false negative 

 

0.20 0.25 0.33 0.50 

x: 

1.0 2.0 3.0 4.0 5.0 

0.01 20 19 20 20 19 19 18 4 18 

0.05 20 20 20 20 20 4 9 9 9 

0.1 20 9 9 9 11 9 11 6 9 

0.3 9 9 9 11 11 11 11 11 9 

0.5 7 7 7 7 7 7 9 7 18 

228 
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Table S1 229 

 230 

(d)  

 

Observation 

error  

variance 

(σv
2
) 

 

Best indicator if a false positive is x times as 

important to avoid as a false negative 

 

0.20 0.25 0.33 0.50 

x: 

1.0 2.0 3.0 4.0 5.0 

0 20 19 20 20 19 19 18 4 18 

0.05 20 20 19 20 19 6 20 7 18 

0.1 20 20 20 20 20 4 4 4 6 

0.3 20 20 20 6 4 6 6 4 6 

0.5 20 20 20 20 20 6 6 6 6 

 231 

 232 

233 
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Figure S1. Changes in AUC as a function of increasing process variation (σu
2
) at different levels 234 

of observation error (σv
2 

= 0, 0.05, 0.1, 0.3, 0.5 in panels a-e, respectively) for all indicators. 235 

Higher AUC values reflect a better ability of an indicator to differentiate between a declining and 236 

non-declining population. Table 2 and Supporting Information (SI) part B define the indicators. 237 

Thick broken dashed lines with solid symbols are for indicators that are based on decline in the 238 

last 3 generations (indicators 1 and 2). Solid lines are for indicators that are based on decline 239 

from some historical baseline (indicators 3-6, 9-12, 17, and 19-20). Thin dotted lines are for 240 

indicators based on decline from a maximum abundance (indicators 7-8, 13-16, and 18). 241 

242 
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Figure S1 243 

 244 

 245 

246 
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Figure S1 247 

 248 

 249 

250 
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Figure S1 251 

 252 

253 
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Figure S2. Changes in AUC as a function of increasing observation error (σv
2
) at different levels 254 

of process variation (σu
2
 = 0, 0.05, 0.1, 0.3, 0.5 in panels a-e, respectively) for all indicators. 255 

Higher AUC values reflect a better ability of an indicator to differentiate between a declining and 256 

non-declining population. Table 2 and Supporting Information (SI) part B define the indicators. 257 

Thick broken dashed lines with solid symbols are for indicators that are based on decline in the 258 

last 3 generations (indicators 1 and 2). Solid lines are for indicators that are based on decline 259 

from some historical baseline (indicators 3-6, 9-12, 17, and 19-20). Thin dotted lines are for 260 

indicators based on decline from a maximum abundance (indicators 7-8, 13-16, and 18). 261 

262 
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Figure S2 263 

 264 

 265 

266 
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Figure S2 267 

 268 

 269 

270 
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Figure S2 271 

 272 

 273 

274 
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Figure S3. Changes in AUC as a function of the boundary used to define a long-term status of a 275 

declining population for all indicators, with no observation error (σv
2 

= 0) and low process 276 

variation (σu
2 

= 0.01). Higher AUC values reflect a better ability of an indicator to differentiate 277 

between a declining and non-declining population. Table 2 and Supporting Information (SI) part 278 

B define the indicators. Thick broken dashed lines with solid symbols are for indicators that are 279 

based on decline in the last 3 generations (indicators 1 and 2). Solid lines are for indicators that 280 

are based on decline from some historical baseline (indicators 3-6, 9-12, 17, and 19-20). Thin 281 

dotted lines are for indicators based on decline from a maximum abundance (indicators 7-8, 13-282 

16, and 18). 283 

 284 

 285 

286 
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Figure S4. Changes in AUC as a function of the values of the a (panel a) and b (panel b) 287 

parameters in equation 1 of the main paper for all indicators. Higher AUC values reflect a better 288 

ability of an indicator to differentiate between a declining and non-declining population. 289 

Increasing a or decreasing b results in more productive populations, leading to fewer populations 290 

being classified as declining using our initial boundaries. Without both declining and non-291 

declining populations, it is impossible to calculate an ROC curve. To avoid this problem, we 292 

used, for only this particular sensitivity analysis, the mean percentage decline generated by each 293 

set of populations as the boundary that defines a declining population. Table 2 and Supporting 294 

Info. (SI) part B define the indicators. Thick broken dashed lines with solid symbols are for 295 

indicators that are based on decline in the last 3 generations (indicators 1 and 2). Solid lines are 296 

for indicators that are based on decline from some historical baseline (indicators 3-6, 9-12, 17, 297 

and 19-20). Thin dotted lines are for indicators based on decline from a maximum abundance 298 

(indicators 7-8, 13-16, and 18). 299 

300 



 23 

Figure S4 301 

 302 

 303 

 304 

 305 

306 
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Figure S5. The false positive rate (FPR, dark blue) and false negative rate (FNR, red) across 307 

threshold levels (ranging from 0 to 100%) for classifying a population as declining during the 308 

evaluation period, given a boundary condition of 90% for classification of the long-term trend. 309 

Results are for the base-case scenario with low process variation and no observation error (σu
2 

= 310 

0.01, σv
2 

= 0). The purple vertical line indicates the threshold where both error rates are equal 311 

(i.e., the lowest rate of both error types if they are considered equally important). If avoiding a 312 

false negative is considered twice as important as avoiding a false positive (i.e., that the false 313 

negative rate must be half the false positive rate), then the lowest false negative error rate 314 

possible is at the threshold of population decline indicated by where the left-hand orange vertical 315 

line intersects the red curve showing the false negative rate. The converse situation is shown at 316 

the right-hand orange line. Table 2 and Supporting Information (SI) part B define the indicators. 317 

 318 

 319 

320 
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Figure S5 321 

 322 

 323 

324 
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Figure S5 325 

 326 

 327 

328 
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Figure S5 329 

 330 

 331 

332 
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Figure S5 333 

 334 

 335 

336 
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Figure S5 337 

 338 
339 
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Figure S6. Plots of the minimum rate of false negative (FN) errors (probability values on 340 

contours) that can be obtained if the false positive (FP) rate is constrained to be below the value 341 

specified on the Y-axis. False negative rates are shown as a function of observation error (σv
2
, 342 

left panels) and process variation (σu
2
, right panels). Left-hand panels were generated assuming 343 

low process variation (σu
2
 = 0.01); right-hand panels were generated assuming no observation 344 

error (σv
2
 = 0). Table 2 and Supporting Information (SI) part B define the indicators. 345 
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Figure S6 349 

 350 

 351 

352 
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Figure S6 353 

 354 

 355 

356 
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Figure S6 357 

 358 

 359 

360 



 34 

Figure S6 361 

 362 

 363 

364 
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Figure S6 365 

 366 

 367 
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Figure S6 369 

 370 

 371 

372 



 37 

Figure S6 373 

 374 

 375 
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Figure S6 377 

 378 

 379 

380 
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Figure S6 381 

 382 

 383 
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Figure S6 385 

 386 

387 
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Figure S7. Changes in AUC as a function of the magnitude of temporal autocorrelation (Φ) in 388 

process variation at different levels of process variation (σu
2
 = 0.01, 0.05, 0.1, 0.3, 0.5 in panels 389 

a-e, respectively) with no observation error (σv
2
=0) for all indicators. Higher AUC values reflect 390 

a better ability of an indicator to differentiate between a declining and non-declining population. 391 

Table 2 and Supporting Information (SI) part B define the indicators. Thick broken dashed lines 392 

with solid symbols are for indicators that are based on decline in the last 3 generations 393 

(indicators 1 and 2). Solid lines are for indicators that are based on decline from some historical 394 

baseline (indicators 3-6, 9-12, 17, and 19-20). Thin dotted lines are for indicators based on 395 

decline from a maximum abundance (indicators 7-8, 13-16, and 18). 396 

397 
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Figure S7 398 

 399 

 400 

 401 

402 
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Figure S7 403 

 404 

 405 

 406 

407 
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Figure S7 408 

 409 

 410 

 411 

  412 

413 
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Figure S8. Same as Figure S7, except these results are from simulations with high observation 414 

error (σv
2 

= 0.5) for all indicators, instead of no observation error. Higher AUC values reflect a 415 

better ability of an indicator to differentiate between a declining and non-declining population. 416 

Table 2 and Supporting Information (SI) part B define the indicators. Thick broken dashed lines 417 

with solid symbols are for indicators that are based on decline in the last 3 generations 418 

(indicators 1 and 2). Solid lines are for indicators that are based on decline from some historical 419 

baseline (indicators 3-6, 9-12, 17, and 19-20). Thin dotted lines are for indicators based on 420 

decline from a maximum abundance (indicators 7-8, 13-16, and 18). 421 

422 
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Figure S8 423 

 424 

 425 

 426 

427 
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 429 
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