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Abstract:  

Assessments of extinction risk based on population declines are widely used, yet scientists 

have little quantitative understanding of their reliability. Incorrectly classifying whether a 

population is declining or not can lead to inappropriate conservation actions or management 

measures, with potentially profound societal costs. Here we evaluate key causes of 

misclassification of decline status and assess the reliability of 20 decline metrics using a 

stochastic model to simulate time series of population abundance of sockeye salmon 

(Oncorhynchus nerka). We show that between-year variability in population productivity 

(process variation) and, to a lesser extent, variability in abundance estimates (observation 

error) are important causes of unreliable identification of population status. We found that 

using all available data, rather than just the most recent three generations, consistently 

improved the reliability of risk assessments. The approach outlined here can improve 

understanding of the reliability of risk assessments, thereby reducing concerns that may 

impede their use for exploited taxa such as marine fishes.  

Introduction   
 The IUCN Red List categories and criteria (IUCN 2013) are among the most widely 

used methods for classifying the extinction risk of various species, with more than 70,000 

species assessed to date. However, the validity of such assessments is often called into 

question when the conservation imperative conflicts with a desire to continue exploiting 

species, such as marine fishes (Mace and Hudson 1999). Extinction risk criteria were 

originally developed for terrestrial species and the controversy over their application to 

marine fishes may have hindered aquatic conservation (e.g., Powles et al. 2000; Reynolds et 

al. 2005; Vincent et al. 2013). Some simulation analyses have shown that IUCN decline 
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criteria may raise false alarms by overstating the risk of extinction of widely distributed 

marine fishes such as bluefin tuna (Matsuda et al. 1998; Rice & Legacé 2007). However, 

recent empirical analyses of the reliability of various risk criteria show that false alarms (the 

incorrect classification of a species as threatened when it is not) is quite low for many 

commercially-exploited marine fishes and Pacific salmon (Dulvy et al. 2005; Porszt et al. 

2012).  

 Now the key challenge is to understand the causes of misclassification and to identify 

the most reliable indicators of risk, that is, those that have the highest probability of correctly 

reflecting the actual condition of the assessed species or population. One principal concern is 

that misclassification can arise from between-year environmentally-driven variability in 

productivity (process variation) and/or census variability arising from imprecise estimates of 

abundance (observation error) (Wilson et al. 2011; Connors et al. 2014). Here, we build upon 

past studies and use simulations that take into account these two sources of variation while 

evaluating the reliability of various population-decline metrics.  

 We quantify and rank the relative reliability of various decline indicators based on 

their ability to correctly classify the overall long-term abundance trajectory as decreasing or 

not. Such evaluations are particularly critical because incorrectly classifying a population as 

decreasing enough to be declared a concern (false positive, Table 1) will divert limited 

conservation funds from other, more at-risk populations. Similarly, incorrectly classifying a 

population as not declining, when it actually is declining (false negative, Table 1), could lead 

to eventual loss of the population because remedial action is not taken.    

 We focus on sockeye salmon (Oncorhynchus nerka), because its population dynamics 

are characterized by substantial variability, yet are understood well enough to develop 
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realistic simulation models. Furthermore, it is a widely distributed fish species of 

conservation concern in Canada (Irvine et al. 2005). Major decreases in these exploited 

sockeye populations can be ecologically, economically, and socially important, even if the 

probability of extinction is low (DFO 2005). Thus, instead of focusing on extinction risk per 

se, we examine the closely related question of whether an assessment of a population decline 

in a given period appropriately reflects that population's long-term trend, including the period 

subsequent to that assessment. Our indicators can thus be viewed as reflecting one symptom 

of extinction risk (i.e., a continuing decrease in abundance) or other serious conservation 

situations (Mace et al. 2008). 

 We extend previous simulation analyses (Punt 2000; Holt et al. 2009; Wilson et al. 

2011) by (1) estimating rates of misclassification (false negatives and false positives) for a 

broad range of thresholds of decline that could be required for classifying a population as 

being at risk, (2) examining 20 indicators of decreasing abundance and their associated 

methods of data analysis, and (3) exploring unequal weightings of types of classification 

errors.  

 We found that in the presence of even small process variation or observation error, 

indicators of decline in population abundance that use all of the available data are more 

reliable than other indicators, including the widely used indicator of recent rate of decline in 

the last 10 years or 3 generations (IUCN 2013). We also show that the ranking of decline 

indicators can be affected by how decision makers weight the relative importance of avoiding 

false positives compared to false negatives. The wider application of our approach can help 

decision makers to more effectively use the restricted funds available for conservation 

actions. 



 

 

This article is protected by copyright. All rights reserved.   5 

 

 

Methods 

Stochastic population dynamics model 

 We used a stochastic model to simulate the population dynamics of our case example, 

semelparous sockeye salmon populations in the Fraser River that have a 4-year life cycle: 

 

ttbS

tt eaSS


 4 , (1)   

 

where St is spawner abundance in year t. This spawner-to-spawner model is analogous to a 

Ricker (1975) spawner-to-recruit model, but here the a parameter of equation 1 encompasses 

biological productivity from spawner-to-adult recruits prior to the onset of fishing, as well as 

subsequent removals by fishing and in-river pre-spawning mortality (online Supporting 

Information (SI), part A). The density-dependent parameter b was set to 1/100,000 (an 

arbitrary scalar of unfished equilibrium abundance). Process variation (between-year 

variability in productivity) was represented by assuming that εt in equation (1) is a lag-1-year 

autocorrelated process: 

 

 ttt u 1 , (2) 

 

where the latter error term ut is normally distributed, ~N(0, u
2
) (Hilborn & Walters 1992). 

Process variation can differ among sockeye salmon populations, so in separate analyses we 

examined levels of σu
2
 of 0.01, 0.05, 0.1, 0.3, and 0.5. For temporal autocorrelation in that 
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process variation, we examined values of Φ (the autocorrelation coefficient) of -0.5, -0.25, 0, 

0.25, 0.5, and 0.75. These ranges for these two parameters encompassed most reported 

estimates for North American sockeye salmon populations (Korman et al. 1995) as well as 

other animal species (SI part A).  

 We also simulated observation error: 

 

tv

tobserved eSS 4  (3) 

 

where vt ~ N(0, v
2
), which reflects the interannual variability in observed abundance due to 

sampling error (Hilborn & Walters 1992). The v
2
 values of 0.0, 0.05, 0.1, 0.3, and 0.5 that 

we explored included the estimated range of observation error for Pacific salmon (Hilborn & 

Walters 1992) and other animal species (SI part A).  

 We simulated population dynamics for 76 years, which consisted of a 12-year 

initialization period, a 52-year (13-generation) "evaluation period", and finally a "subsequent 

period" of 12 years (3-generations) (Figure 1a). We ran 500 Monte Carlo trials for each 

scenario; a scenario consisted of one combination of the magnitude of process variation (u
2
) 

and observation error (v
2
). Each population (i.e., each Monte Carlo trial) in each scenario 

was randomly assigned a productivity parameter value (the a in equation 1) drawn from 

~N(1,0.3), representing differences in productivity among different populations (some 

decreasing and some not due to local variables such as fishing rate, habitat quality, and 

environmental conditions) (SI part A).  
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Estimation of indicators during the "evaluation period" 

 We used 20 indicators of time trends in adult abundance to assess whether our 

populations were declining or non-declining during the "evaluation period" (Table 2 and SI 

part B). These indicators consisted of different combinations of three components. First was 

the time frame examined, either (a) the most recent three generations (i.e., 12 years in our 

case) in the evaluation period prior to the status-assessment year, (b) the entire historical 

evaluation period prior to the assessment year, or (c) the time series since maximum 

abundance, regardless of where it occurred in the evaluation period (Table 2). The second 

component was the data-handling procedure (smoothed vs. unsmoothed data, and raw data 

vs. loge-transformed data vs. means of 4-year generations; Table 2). Third, changes in 

abundance over time were measured using either a linear regression (used to calculate either a 

rate or extent of change), or a difference in mean abundance between two periods.  

 For each relevant simulated year of the 13-generation evaluation period, we 

determined for each of the 20 indicators whether the indicator classified the current status of 

the population as "declining" or "non-declining". To do this, in a set of separate calculations, 

we compared the estimated decrease in abundance against various thresholds that delineated 

"declining"; those thresholds ranged from 0 to 100% in increments of 1% (SI part B). That 

status classified during the evaluation period (e.g., Figure 1a) was then compared to the 

overall long-term status, which included the subsequent period (Figure 1b) as described next.  

 

Overall long-term population trend 

 We focused on how well the 20 risk indicators reflected the actual overall true long-

term trend of each simulated population. To determine whether that long-term trajectory of 
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the population was declining, we estimated the trend in abundance from the end of the 

initialization period through the subsequent period, as shown in Figure 1b (also SI part C). 

For one set of simulations, if the population decreased more than 90%, which was the 

base-case boundary condition indicating a conservation concern, then the overall long-term 

status was classified as "declining"; otherwise it was classified as "non-declining". We also 

examined other commonly used boundary conditions of 50% and 70% decline (COSEWIC 

2011; IUCN 2013).  
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Measuring reliability  

 We defined the reliability of an indicator as its probability of correctly distinguishing 

between declining and non-declining populations. Specifically, for a given indicator of 

decline and a given scenario, we compared the indicator's assessed status of the population 

(declining or not) in each year of the evaluation period to the estimated long-term status (as 

described above), resulting in either a true negative (TN), true positive (TP), false negative 

(FN) or false positive (FP) outcome (Table 1). For each of the 20 indicators, these different 

categories of outcomes were tallied across all years and 500 trials. We then used a Receiver 

Operating Characteristic (ROC) analysis to combine into a single metric for each decline 

indicator the true and false positive rates that were produced across a wide range of 

thresholds of decline in abundance for classifying population status, from 0 to 100% in 1% 

increments (Burgman 2005; Porszt et al. 2012; SI part D). The resulting area under the ROC 

curve (AUC) reflects the ability of a given indicator to correctly distinguish whether a 

population is declining; higher AUC values mean greater reliability (Hibberd & Cooper 

2008). An AUC value of 0.97 reflects an indicator with a near-perfect ability to distinguish a 

declining from a non-declining population, whereas AUC = 0.51 (falling near the 1:1 line) 

indicates about a 50/50 chance of correctly making that distinction (Figure 1c).  

 

Different error weightings  

 One limitation of an ROC analysis is that it inherently attributes equal weighting to 

false positive and false negative errors; hence, the importance of avoiding each type of error 

is the same. That equality is unrealistic in common situations where resource managers must 

make trade-off decisions regarding conservation and resource-use objectives (Peterman 1990; 
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Mapstone 1995; Field et al. 2004; Dulvy et al. 2006). If one type of error is considered more 

serious than the other, then managers can specify a desired relative weighting or ratio of the 

error rates (for instance, that the more heavily weighted false negative rate must be less than 

half the false positive rate). Therefore, we also investigated the reliability of the 20 indicators 

of decline across a wide range of unequal error weightings.  

 

Results 

 We first describe results for our base case, in which we assumed that the lag-1 

autocorrelation coefficient (Φ) in process variation was zero, before showing how our results 

are affected by a wide range of positive and negative Φ values. At extremely low levels of 

both process variation and observation error, all 20 indicators were almost equally reliable at 

discriminating between declining and non-declining populations (AUC values >0.9) (Figure 

2a). However, reliability decreased with greater process variation and observation error 

(compare AUCs of Figures 2b, c, and d with Figure 2a). Indicators that used a historical 

baseline starting at the beginning of the time series (in particular indicators #4, 6, 9, and 20) 

consistently outperformed the other two types of indicators (e.g., Figures 2a-d; also see SI 

part E, Figures SI-1 and SI-2). Even with fairly low process variation or observation error, 

indicators calculated from a historical baseline were generally more reliable than either (1) 

indicators with a baseline based on the maximum abundance anywhere in the time series, or 

(2) indicators based on decline over the most recent 3 generations (Figure 2). The latter group 

included indicator #2, which is analogous to the commonly used IUCN criterion A measured 

over only the past three generations. However, the IUCN criterion A metric performs far 
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better when the full time series is used rather than just the past three generations (indicators 

#19 and #20). 

 Indicators varied in how robust they were to increases in process variation, σu
2
, and 

observation error, σv
2
. The AUC of the majority of indicators decreased by ~10% when 

process variation increased from 0.01 to 0.5, whereas the AUC of indicators #1, 2, 5, 17, and 

18 decreased at least twice as much as that (Figures 2a and b, also SI part E, Figures SI-1 and 

SI-2). The latter group of indicators included ones that either evaluated the rate of decline 

over the most recent 3 generations (#1 and 2), used raw abundance (#17 and 18), or estimated 

decline based on the first corresponding population-cycle year (#5). By contrast, most 

indicators were less sensitive to increases in observation error, exhibiting only slight 

decreases in reliability (drop in AUC of ~5%) when σv
2
 was increased from 0 to 0.5 (Figures 

2a and c, also SI part E, Figures SI-1 and SI-2). Exceptions to this trend included indicators 

#1 and 2 (recent rate of decline), which were much more sensitive to observation error, with a 

drop in AUC of ~20% when σv
2
 increased from 0 to 0.5 (Figures 2a and c, also SI part E, 

Figures SI-1 and SI-2). 

 The AUCs of all indicators were relatively insensitive to changes in the boundary 

used to classify a population as declining over the long term, i.e., 50%, 70%, or 90% (AUCs 

changed by <4%), but again, indicators #1 and 2 changed the most (SI part E, Figure SI-3). 

The AUCs of all indicators declined with increases in the mean a parameter, but the rank 

order of the indicators was relatively insensitive to changes in mean a and b parameters (SI 

part E, Figure SI-4).  

 

Conservation objectives, error weightings, and error tolerance 



 

 

This article is protected by copyright. All rights reserved.   12 

 

 There is an inherent trade-off between false positive rate (FPR) and false negative rate 

(FNR); both errors cannot be completely avoided (SI part E, Figure SI-5). If managers 

explicitly specify a desired relative error weighting, then the indicators can be optimized to 

target this weighting by adjusting the threshold that signals a declining population. The 

optimal threshold depends on the manager‟s relative preferences and the indicator being used 

(SI part E, Figure SI-5). The top-ranked indicators #4, 6, 9, and 20, which used some 

historical baseline, were best across the majority of error weightings for different magnitudes 

of process variation (SI part E, Table SI-1a). Indicators 4 and 20 were best for almost all 

weightings and levels of observation error (SI part E, Table SI-1b). These results still held at 

high levels of temporal autocorrelation in process variation (SI part E, Tables SI-1c and d). 

For cases in which managers have an upper limit to the acceptable false positive error 

rate, we estimated the false negative rate that would result from the trade-off noted in SI part 

E, Figure SI-5. Figure 3 shows the effect of variance in observation error (X-axis of panels a 

and b) and process variation (panels c and d) on this nonlinear trade-off between the 

acceptable false positive rate (Y-axis) and the resulting false negative rate (contours). The 

high-ranking indicator #4 reflects the change in abundance from the first generation in the 

time series (Figures 3a, c), whereas the commonly used indicator #2 measures decline over 

only the last 3 generations (Figures 3b, d). For example, if managers using that decline 

indicator #2 decided that it would be unacceptable to have greater than a 0.1 probability of a 

false positive error (i.e., probability of incorrectly concluding that a population was 

declining), and if the population had a high level of observation-error variance (say σv
2
=0.3), 

then they could expect a false negative rate of about 0.4, as shown on the contour plot (white 

dot in Figure 3b). This means that if the population is actually not declining, there will be a 
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10% chance of the indicator reporting that it is declining, but if the population is actually 

declining, there will be about a 40% chance of the indicator erroneously reporting that it is 

not declining. If managers want a lower false negative rate, then they have three choices: 

increase their tolerance for false positives, decrease observation error, or pick a different 

indicator. As an example of the latter, given the same situation, indicator #4, which reflects 

change in abundance since a historical baseline, would provide a much more desirable false 

negative rate of slightly less than 5% (white dot in Figure 3a). Regardless of the magnitude of 

observation error or process variation, indicator #4 has lower rates of false negative errors 

than analogous situations for indicator #2 (compare contour values in Figure 3a with those in 

3b; also compare 3c with 3d). See SI part E, Figure SI-6 for analogous contour plots for all 20 

indicators. 

 The AUCs of all indicators declined at high levels of temporal autocorrelation in 

process variation, Φ, with indicators #1 and 2 being the most affected (Figure 4, SI part E, 

Figure SI-7). The higher reliability of indicators that were based on some historical baseline 

also held across a wide range of autocorrelation (Figure 4, SI part E, Figure SI-7). The 

stronger the positive autocorrelation, the larger the advantage of indicators based on historical 

baselines compared to indicators based on just the last three generations (#1 and 2) (Figure 4, 

SI part E, Figure SI-7). The addition of observation error, even at a very high level (σv
2
=0.5), 

did not have an interaction effect with increasing levels of temporal autocorrelation in 

process variation. Specifically, there was almost no difference in either the absolute or 

relative performance of the different indicators beyond what was found in the base case (i.e., 

without temporal autocorrelation in process variation) and in the case with autocorrelation 

with no observation error (SI part E, Figure SI-8). 
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Discussion 

 A key problem in conservation biology is that the reliability of most extinction-risk 

metrics or indicators is at present largely uncertain, i.e., their ability to correctly categorize a 

population as being at risk is unclear. However, this uncertainty could be reduced, and 

outcomes from conservation decision-making could be improved, if more quantitative 

analyses were done like those presented here, which explicitly take into account uncertainties 

resulting from errors in abundance estimates and natural variability in ecological processes. 

Other scientists have also documented differences in reliability among indicators (Wilson et 

al. 2011; Porszt et al. 2012; Regan et al. 2013). We found (as did the empirical analysis of 

Porszt et al. 2012) that indicators that measure the extent of decline from a historical baseline 

tend to better reflect a population's long-term status than either (1) a decline from some 

maximum abundance, or (2) the widely-used IUCN rate of decline over the previous 3 

generations. As well, some indicators are more predisposed to making certain types of errors, 

but generally process variation reduced reliability more than observation error, as was also 

shown by Wilson et al. (2011). 

 For commonly used IUCN-like indicators #1 and 2 (declines in abundance over the 

most recent 3 generations), we found that reliability decreased substantially more than the 

reliability of other indicators when process variation, observation error, or temporal 

autocorrelation in process variation increased. This poor performance is likely due to the 

assessment of status over a short period (the most recent 12 years vs. up to 52 years), which 

makes long-term trends in abundance more difficult to identify amid the "noise" of process 

variation and observation error. In contrast, indicators based on some early historical baseline 



 

 

This article is protected by copyright. All rights reserved.   15 

 

were the least sensitive to increases in either process variation or observation error. Although 

comparison with early portions of time series is recommended in some technical guidelines 

(Mace et al. 2002), many schemes emphasize recent rates of decline. There are two ways to 

calculate the IUCN criterion A: using only the most recent three generations of data or using 

all available data. IUCN recommends the use of all data only when “populations fluctuate 

wildly or oscillate with periods longer than the generation time” (IUCN 2013, page 26). 

However, here we show that the full span of data should be used not just for these special 

cases, but whenever there is process or observation error, i.e., for any real time series. We 

found that indicators that reflect the rate of decline over a three-generation time span can be 

as reliable as the best-performing indicators, but only when that rate is calculated using all 

available data and applied to those three most recent generation spans. Our findings could 

easily be incorporated into technical guidance for use in IUCN and other related conservation 

assessments.  

 For two other reasons, we recommend using all data from a time series, not just the 

most recent data. First, indicators of the recent rate of decline ignore the elevated extinction 

risks when recent abundances are relatively stable but are much lower than in an earlier 

period (the shifting baseline syndrome of Pauly 1995). Second, emerging evidence suggests 

that for heavily-exploited marine fishes, process variation may increase at low population 

densities owing to truncated age structures (Minto et al. 2008; Shelton and Mangel 2011), 

reducing recovery rates and elevating risk (Keith and Hutchings 2012; Neubauer et al. 2013).  

  Our model simulated semelparous sockeye salmon populations. However, we 

encourage other researchers to challenge assumptions that their current indicators reliably 

reflect actual population trends, and estimate that reliability for their own populations, 
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especially those with different life-history traits or population dynamics (Dulvy et al. 2004). 

Those future analyses (either empirical such as Porszt et al. 2012 or simulations like Wilson 

et al. 2011 and here) should explicitly take into account interannual variation in biological 

processes (and associated temporal autocorrelation), as well as errors in estimates of 

abundance, because these sources of variation can differentially affect the reliability of 

various indicators. People making management policies and conservation decisions should 

request that such tests of reliability be conducted before any indicators are used as input to 

risk assessments (Porszt et al. 2012).  

 Decision makers must also consider the relative importance, or severity of 

consequences, of false positives and false negatives when ranking indicators. For instance, in 

fisheries management, the economic and social costs associated with false negatives can 

often be as serious as false positives (Peterman 1990; Mapstone 1995; Field et al. 2004; 

Dulvy et al. 2006). Different stakeholders will often have different error weighting 

preferences, in part because the costs of these errors might be borne by different groups 

(Peterman 1990), which can present challenges in selecting error weightings. Despite the 

consistently high rank of certain indicators, we also showed that in some cases, the ranking of 

indicators can be influenced by the relative magnitude of weightings placed on the two types 

of errors, as well as a stated maximum acceptable error rate. Decision makers should 

therefore be explicit and transparent about those weightings and acceptable error rates, and 

mindful of which stakeholders will be affected by these (sometimes implicit) decisions. 

Standard methods of risk assessment and decision analysis can further help managers choose 

appropriate indicators of population risk (Burgman 2005).  



 

 

This article is protected by copyright. All rights reserved.   17 

 

 Given the prominent role that IUCN and other indicators of conservation concern play 

in species status assessments worldwide, our results should prompt scientists who develop 

and evaluate extinction-risk criteria to use simulation and empirical analyses to understand 

the performance and reliability of any proposed criteria. We found that use of all available 

data, rather than the common practice of using just the most recent three generations, 

consistently increased reliability of risk assessments. Quantitative analyses such as ours, 

which can estimate reliability of indicators, are a relatively inexpensive way to ensure that 

management agencies make the best decisions about their use of limited conservation funds.    
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Table 1. Categories of possible outcomes when an indicator's assessed current status of a 

population in a given year is compared to the overall long-term status of the same population. 

Note that the probabilities for two cases, false positives (α) and false negatives (β), are 

sufficient to determine the probabilities for the other two cases; the true negative rate is 1-α, 

and the true positive rate is 1-β. 

 Indicator's assessed current status: 

Non-declining Declining 

 

Overall 

long-term 

status: 

Non-

declining 

True negative (TN) 

1-α 

False positive (FP) 

α (Type I error) 

Declining False negative (FN) 

β (Type II error) 

True positive (TP) 

1-β 
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Table 2. A summary of the 20 indicators of population decline evaluated here for assessing 

status during the simulated evaluation period (based on indicators suggested by IUCN 2013, 

Mace et al. 2002, and Holt et al. 2009, among others). Further details are in online Supporting 

Information part B. 

Indicator  Periods* Smoothed
†
 Transformation

‡
 

Change in 

abundance
§
 

1 Recent 3 gen. No  Loge Regression: rate 

2 Recent 3 gen. Yes Loge Regression: rate 

3 Hist.: first year No  Loge Regression: extent 

4 Hist.: first year Yes Loge Regression: extent 

5 Hist.: cycle year No  Loge Regression: extent 

6 Hist.: cycle year Yes Loge Regression: extent 

7 Max.: single year No  Loge Regression: extent 

8 Max.: single year Yes Loge Regression: extent 

9 Hist.: first gen. No  Mean: Sliding window Two means 

10 Hist.: first gen. Yes Mean: Sliding window  Two means 

11 Hist.: first gen. No  Mean: Generation block Two means 

12 Hist.: first gen. Yes Mean: Generation block Two means 

13 Max.: 3 gen. No  Mean: Sliding window Two means 

14 Max.: 3 gen. Yes Mean: Sliding window Two means 

15 Max.: 3 gen. No  Mean: Generation block Two means 

16 Max.: 3 gen. Yes Mean: Generation block Two means 
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17 Hist.: first gen. No Raw Two means 

18 Max.: 3 gen. No Raw Two means 

19 Hist.: first year No  Loge Regression: rate 

20 Hist.: first year Yes Loge Regression: rate 

*Periods -- "Recent 3 gen." is the percent decline over the most recent 3 generations (12 

years) analogous to criterion A of IUCN (2001) and COSEWIC (2011); "Hist." is the percent 

decline from some historical baseline since the beginning of the time series (either the first 

year of the evaluation period, the geometric mean abundance of the first 4-year generation, or 

the first corresponding cycle year in the time series). See Supporting Information part A for 

explanation of "cycle" year; "Max." is the percent decline from the maximum geometric 

mean abundance in the time series (either single year or 3-generation period) anywhere in the 

evaluation period of the time series.  

†
Smoothed -- Abundance estimates were either smoothed with a 4-year (1-generation) 

running mean or were left unsmoothed. 

‡
Transformation -- Abundance estimates were either raw values, loge-transformed values, or 

the geometric mean abundance of 4-year generations where the generations either moved one 

year at a time in sliding windows or in 4-year-generation blocks with no overlap of years 

(i.e., status only assessed every four years). "Raw" refers to the original, untransformed data. 

§
Change in abundance -- "Regression" means that changes in abundance over the designated 

period were measured using robust linear regression to minimize the influence of outliers 

(Venables & Ripley 2002) and then calculated as either a rate or extent of change; "Two 

means" refers to changes in abundance that were measured as a percent decline from a mean 

abundance during some baseline period to either the current year's abundance or the mean 

abundance in the current generation being evaluated.  
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Figure 1. An example of (a) how a decline in population abundance would be assessed using 

Indicator 17 (percent decline from the geometric mean abundance of the first 4-year 

generation in the evaluation period (years 13-16) to abundance in the current year of 

assessment -- year 31 here), for one example Monte Carlo trial output from the simulation 

model, and (b) how the overall long-term status would be assessed for the same Monte Carlo 

trial -- the decline in generational mean abundance, as estimated from regression, between the 

last generation of the initialization period (years 9-12) and the last generation of the 

subsequent period, also estimated from regression (years 73-76). (c) Example Receiver 

Operating Characteristic (ROC) curves for two hypothetical indicators created by plotting 

true positive and false positive rates (Table 1) for each of 101 threshold values, ranging from 

0 to 100%, for classifying a population as declining in abundance. The area under the curve 

(AUC) is also shown, including for the straight-line case for which the indicator would be no 

better than doing a coin toss.  
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Figure 2. Ranking of indicators based on their reliability (probability of correctly reflecting 

the long-term status of the population), as measured by the area under the ROC curve (AUC), 

for (a) low process variation, i.e., low environmentally-driven variability in productivity (σu
2 

= 0.01) and no observation error (σv
2 

= 0); (b) high process variation (σu
2 

= 0.5) and no 

observation error (σv
2 

= 0); (c) low process variation (σu
2
=0.01) and high observation error 

(σv
2 

= 0.5); and (d) high process variation (σu
2 

= 0.5) and high observation error (σv
2 

= 0.5). 

Indicators based on the decline in the last three generations are black, indicators based on 

decline from a historical baseline are white, and indicators based on decline from maximum 

abundance are gray.  
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Figure 3. Plots of the minimum rate of false negative (FN) errors (probability values on 

contours) that can be obtained if the false positive (FP) rate is constrained to be below the 

maximum acceptable value specified on the Y-axis. False negative rates are shown as a 

function of observation error, σv
2
, (but with process variation set at σu

2 
= 0.01) for the top-

performing indicator in this study #4 (a) and commonly used decline indicator #2 (b). False 

negative rates are also shown for different levels of process variation, σu
2
, (but with no 

observation error, σv
2 

= 0) for indicator #4 (c) and indicator #2 (d). The white data point in 

parts (a) and (b) indicates the false negative rate that will result from a maximum acceptable 

false-positive rate of 0.1 and an observation error variance of 0.3.  
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Figure 4. The reliability, or area under the curve (AUC), of the indicators across levels of 

temporal autocorrelation in process variation (Φ) ranging from -0.5 to 0.75 for (a) low 

process variation (u
2
=0.01) and (b) high process variation (u

2
=0.5), both with no 

observation error. Dark blue represents the highest probability of correctly classifying a 

population's abundance as decreasing or not, whereas dark red is the lowest probability. 

Results for other levels of process variation and observation error are found in the SI part E, 

Figures SI-7 and SI-8. 

 


