Predators, prey, stability, cycles, feedback and coexistence

Predator prey dynamics

Number of Snow Owl nests found on Bylot Island in relation with the lemming abundance (1993-2007)

Could cycles could be an outcome of simple interactions between one predator species and one prey species?

Predator prey dynamics

What stabilizes predator-prey dynamics?

TODAY

Three functional responses

Three models

Selective predators

Selective predation and community structure

Consumptive and non-consumptive effects

How do individual predators respond to variation in prey density?

Pardosa - sapfeeder interactions

Expt in a mesocosm (7.5x30cm jar)

4 species of sapfeeder at four densities

1 wolf spider/jar

Three functional responses

Niche models

for two prey species, a shared predator and a shared resource

replace R* with P*

Species 2 wins

Coexistence

can occur if better defended species (higher P*) is the weaker resource competitor (higher R*)

Lotka-Volterra model

$$\frac{dN}{dt} = rN - aPN$$

$$dP = faPN - qP$$

No. Prey (N)

Rosenzweig-MacArthur model

inefficient predator (q/fa to the right) produce a stable equilibrium

efficient predator
(q/fa to the left)
produce a limit cycle or
extinction of one/both
populations

Predator self limitation model

Predators compete over same prey item (=interference)

or are limited by a second resource eg a territory, nest site, den

Predator density dependence stabilizes predator-prey dynamics

COMMUNITY ECOLOGY, Figure 5.11
© 2012 Sinauer Associates, Inc.

Modifications to the Lotka-Volterra model show

- incorporating a carrying capacity acts to stabilize the system
- incorporating a more realistic functional response stabilizes the system
- predator- prey systems are more likely to be stable when the predator is relatively inefficient
- the addition of resources that increase K can destabilize a system
- interference or competition among predators for limiting resources will stabilize the system

Predators are selective - eg cheetah Hayward et al. 2006 J Zool

Predators can adjust their behavior to maximize energy gain as predicted by optimal foraging theory

Selective predation affects coexistence and diversity

Dr Robert Paine 1933-2016

Figure 21.3. Paine's rocky shore community. (After Paine, 1966.)

preference for competitively dominant species

promotes diversity

Selective predation affects coexistence and diversity

B. Littorina prefer algae that are inferior competitors

A. Littorina prefer most competitive algae

COMMUNITY ECOLOGY, Figure 6.6

© 2012 Sinauer Associates, Inc.

Predators have consumptive and

non-consumptive effects on prey

Consumptive Non-consumptive

Lethal Nonlethal

Density mediated interactions Trait mediated interactions

- habitat use and habitat shifts
- life history evolution
- activity level
- morphological changes

Paramecium (prey)

+ Flatworm (predator)

Hammill et al. 2010. American Naturalist 176: 723-31.

The relative importance of consumptive and non-consumptive effects

"Predation" spider

— Pisaurina mira

glue mouthparts

→ "Risk" spider

Prey

Melanoplus femurrubrum

Compare effects of Predation and Risk spiders

Movement
Densities of grasshopper nymphs
Diet
Amount Grass/Forbs consumed

Preisser et al. 2005 Ecology

TMI = trait mediated (non-consumptive) effect DMI = density mediated (consumptive) effect

Meta-analysis – weighted by sample size

Effect	Two-level food chain		
	Mean	95% CI	N
Response ratio			
TMI effect/total effect	0.58	(0.50, 0.67)	136
DMI effect/total effect	0.54	(0.47, 0.63)	133

Classic paper

Hammill et al. 2010. **Predator functional response changed by inducible defence in prey.** American Naturalist 176: 723-31.

Discussion papers

Predator-prey dynamics – stabilizing factors

Predators and community structure

Consumptive and non-consumptive effects

save trophic cascades for later