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abstract: Functional responses play a central role in the nature
and stability of predator-prey population dynamics. Here we inves-
tigate how induced defenses affect predator functional responses. In
experimental communities, prey (Paramecium) expressed two pre-
viously undocumented inducible defenses—a speed reduction and a
width increase—in response to nonlethal exposure to predatory Sten-
ostomum. Nonlethal exposure also changed the shape of the pred-
ator’s functional response from Type II to Type III, consistent with
changes in the density dependence of attack rates. Handling times
were also affected by prey defenses, increasing at least sixfold. These
changes show that induced changes in prey have a real defensive
function. At low prey densities, induction led to lower attack success;
at high prey densities, attack rates were actually higher for induced
prey. However, induction increased handling times sufficiently that
consumption rates of defended prey were lower than those of un-
defended prey. Modification of attack rate and handling time has
important potential consequences for population dynamics; Type III
functional responses can increase the stability of population dynamics
and persistence because predation on small populations is low, al-
lowing a relict population to survive. Simulations of a predator-prey
population dynamic model revealed the stabilizing potential of the
Type III response.

Keywords: inducible defenses, predator-prey interactions, functional
responses.

Introduction

Many prey produce defensive phenotypes after exposure
to predatory cues (Tollrian and Harvell 1999). These in-
ducible defenses can include changes in behavior, mor-
phology, and life history. Changes in behavioral and mor-
phological traits can occur within or across generations
and directly change susceptibility to predation (Van Bus-
kirk and McCollum 2000). Behavioral defensive traits in-
clude reduced movement rates (Relyea 2001), leading to
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reduced encounters between predators and prey and lower
consumption rates (Werner and Anholt 1993; Skelly 1994;
Van Buskirk and McCollum 2000). Morphological defen-
sive traits include the production of neck teeth in Daphnia
pulex (Dodson 1974) and the curved-shell morph in the
acorn barnacle (Lively 1986). As well as modifying rates
of attack, induced changes in prey morphology can in-
crease the time it takes to handle and digest prey (Jeschke
and Tollrian 2000; Altwegg et al. 2006). Therefore, induced
changes in prey traits have the potential to alter attack
rates and handling times in predator-prey interactions,
affecting population dynamics (Vos et al. 2004). Increased
handling time lowers maximum predator ingestion rate,
lessening the maximum impact of predators on prey and
the potential for top-down control and increasing pred-
ator-prey dynamic stability. Functional responses describe
the number of prey a predator can consume as prey density
increases (Solomon 1949; Holling 1959), therefore de-
scribing predation risk experienced by prey at different
population sizes. In this study, we experimentally examine
simultaneous changes in behavior and morphology caused
by predator cues and then investigate how the same pred-
ator cue affects aspects of the functional response.

When predators handle only one prey at a time, func-
tional responses tend to be either Type II or Type III; Type
I functional responses generally are observed in filter feed-
ers (Jeschke et al. 2004). In a Type II response, the pro-
portional rate of prey consumption is highest at low prey
densities and decreases as prey density increases. In a Type
III response, the proportional rate of consumption is low
at low prey densities, initially increases with prey density,
then decreases at high prey densities. There is a greater
risk of extinction in predator-prey dynamics with Type II
than with Type III functional responses, as a Type II func-
tional response results in prey experiencing the highest
predation risk at low densities (Sarnelle and Wilson 2008).
Evidence exists that differences in time spent collecting
prey mediated by optimal foraging decisions or differences
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in habitat/prey type can change the response from a Type
II to a Type III (Abrams 1982; Lipcius and Hines 1986).

To investigate how defenses affect functional responses,
we used the holotrich ciliate Paramecium aurelia as prey.
This species is consumed by the flatworm Stenostomum
virginianum (Rhabdocoela, Turbellaria), and the pair co-
exist in nature (Kratina et al. 2007). Inducible defenses
have not been documented in Paramecium, even though
this species has been used in predator-prey experiments
extensively. A Web of Science literature search including
the terms “Parameci∗ AND (defen∗ OR induci∗)” revealed
no papers documenting behavioral or morphological de-
fenses in Paramecium. The search did, however, find papers
documenting changes in these traits in other ciliates (Alt-
wegg et al. 2006) and the use of chemical defenses in
Paramecium (Sugibayashi and Harumoto 2000), implying
that the search was broad enough that papers on mor-
phological or behavioral defenses in Paramecium would
have been found if they existed. Inducible defenses are
prevalent in other ciliates (Kusch 1993; Hammill et al.
2009) and have been shown to confer benefit in terms of
a reduction in predation risk (Altwegg et al. 2006). As
Stenostomum readily consumes Paramecium and consti-
tutes a serious predation risk (Kratina et al. 2007), we
predicted that Paramecium will induce some form of de-
fense. Hence, the aims of this study were to investigate
whether behavioral and morphological changes are found
in Paramecium, to measure the effect of induction on the
predator’s functional response, and to investigate the po-
tential for any observed effects to influence the stability
of predator-prey population dynamics.

Methods

All Paramecium used in this study were the asexually pro-
duced descendents of a single individual isolated from a
pond on the University of Victoria campus. Paramecium
culture media consisted of 0.6 g L�1 crushed protozoa
pellets (no. 13-2360, Carolina Biological Supply, Burling-
ton, NC) dissolved in Naya mineral water (Mirabel, Que-
bec) filtered through double-layered no. 4 coffee filters.

Stenostomum were cultured from individuals isolated
from a single pond on the University of Victoria campus.
They were cultured in Pyrex crystallizing dishes containing
300 mL Naya water and fed a mixture of bacteria and
small flagellates. Individuals of relatively equal length
(400–650 mm) were used in the functional-response trials
to minimize differences due to predator size. All experi-
mental subjects were cultured in a controlled-temperature
room at 20�C on a 16L : 8D cycle.

The chemical cue used to test for induction of prey
defenses consisted of freeze-killed Stenostomum at a den-
sity of 250 individuals mL�1. Before being used, this cue

was filtered to remove particulate matter; this removed
dead predators so that minimal nutrients were added to
the experimental vessels as the cue was transferred. Fil-
tering also removes bacteria and small flagellates but does
not exclude the possibility that it is these species offered
as food that generate the cue. This density of dead pred-
ators is higher than naturally encountered densities of live
predators because we have observed that, per capita, dead
predators generate a weaker response (E. Hammill, per-
sonal observation). Stenostomum chemical cue at this den-
sity can induce changes in Euplotes that are also preyed
upon by Stenostomum (Hammill et al. 2009).

Prey Behavioral and Morphological Defenses

Control and predator-exposed treatments were distributed
across two 24-well plates using a random-number gen-
erator. Predator-exposed treatments consisted of 400 mL
protist media and 200 mL predator chemical cue. In control
wells, predator cue was replaced with 200 mL Naya water.
Thirty individual Paramecium were added to each well and
left to incubate for 24 h at 20�C. All Paramecium used in
either the behavioral or the morphological experiments
were from the same stock culture and experienced identical
environmental conditions before being used. This ensured
that differences observed between treatments resulted from
experimental rather than initial conditions.

Data on behavioral defenses were collected by video-
graphing each well for 35 s using a Nikon Coolpix con-
nected to a Nikon Optiphot-2 dissecting microscope.
Plates were left on the microscope for 20 min before being
videographed, allowing test subjects time to recover after
the disturbance associated with transferring the plate to
the microscope. Five individuals from each recording were
randomly chosen, and their speed was analyzed using
ImageJ software (Rasband 2006). Using one video per well
ensured that individuals were measured only once. Dis-
tance covered was then converted to speed (mm s�1). Mean
speed per well was used in the analysis, thereby avoiding
pseudoreplication. Differences between Paramecium ex-
posed to predator cues and controls were analyzed with a
t-test.

To measure morphological change, four 24-well plates
were established as described above and left to incubate
for 24 h. Each well was then fixed with 5% Lugol’s media,
and 10 individuals were photographed. This method was
employed as dead individuals are easier to photograph,
and it ensured that each individual was photographed only
once. Lugol’s appears to have minimal effects on Para-
mecium width, and any effect would be similar for both
defended and undefended prey. Maximum width was mea-
sured using ImageJ, and mean width per well was taken
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as the unit of replication. Differences between control and
predator-exposed wells were analyzed with a t-test.

Functional Responses

Foraging models usually assume that the foraging time
available to a predator is split between two mutually ex-
clusive activities: searching for prey and handling prey
(Holling 1959). Attack rate (area or volume per time) and
handling time are what determine the predator’s func-
tional response. Type II and III functional responses can
be described by the equation

PT
N p , (1)e qh � (1/bN N)

where Ne is the number of prey consumed during time T
(set to 4 in the current study, to signify the 4-h duration
of the experiment), N is initial prey density, P is the num-
ber of predator individuals, and h is handling time (Real
1977), the time taken between stopping searching after an
attack to starting searching again. Handling time can in-
clude time spent on activities such as capture, subduing,
consumption, digestion, and repairs (Jeschke et al. 2002);
we therefore treat h as an umbrella parameter encom-
passing all these activities. Time spent handling prey before
rejection or escape also adds to handling time, as it cannot
be spent searching for other prey.

The equation above is, effectively, a Type II functional
response with a density-dependent attack rate .qa p bN
Real (1977, p. 294) describes as “the rate of potentialqbN
encounter (or the detection area swept out) in one unit
of time.” Parameter q determines the type of functional
response, and b is the normalization constant for the scal-
ing of attack rate with prey density. When , theq p 0
equation generates a Type II functional response—attack
rate is independent of prey density. When , a Typeq 1 0
III curve is produced—attack rate increases with prey
density.

To produce the defended and undefended individuals
for use in feeding trials that can be used to estimate a
functional response, we added 30 Paramecium each to the
wells of six 24-well plates containing 400 mL of protist
media. All test subjects were taken from the same stock
bottle, ensuring that there were no preexisting differences
in behavior, morphology, or reproductive rates. We then
randomly added 200 mL predator cue to half the wells and
200 mm Naya water to the others and incubated for 24 h,
mimicking the treatments used in the first experiments.
Individuals were transferred from these incubating wells
to experimental wells in new 24-well plates. We compared
the functional responses of Stenostomum consuming Par-
amecium that had been exposed to chemical cues (de-

fended prey) with those of the control (undefended prey).
Five replicates each of 1, 3, 5, 7, 10, 15, 20, 30, or 60 prey
were added to 500 mL protist media within a well of four
24-well plates (45 samples for predator and control wells;
total ). These densities were used, because theyn p 90
more than encompass the range of densities of Paramecium
in stock cultures (E. Hammill, personal observation). The
large number of trials at low densities makes it possible
to distinguish between Type II and Type III, while the very
high densities increase the chances of finding the asymp-
tote of the response curve. After prey had been added, one
Stenostomum was introduced per well, and the plates were
left at 20�C for 4 h. As the doubling time for Paramecium
at 20�C is ∼12 h (Leary and Petchey 2009), reproduction
during the experiment would be small. Each well was then
fixed with three drops of 5% Lugol’s media, and uncon-
sumed Paramecium were counted. It is possible that during
the time course of the predation trial, the “undefended
controls” may have started to initiate defenses. However,
as the density of predators in the trial was relatively low
(1 per 500 mL) this effect should be small. Nonetheless,
when we use the term “undefended prey,” we are referring
to the prey that had not been preexposed to predator cues.

We wished to examine how exposure to predator cues
affected the functional response parameters b, h, and q.
In our experiment, and many others, prey density N was
not constant but rather declined throughout the experi-
ment due to predation. Therefore, to find the predicted
number of prey eaten, we used numerical integration of
declining prey density over the same duration as the ex-
periment to find the number (and therefore the propor-
tion) of prey consumed. Using R (R Developmental Core
Team 2009), we fitted by maximum likelihood with bi-
nomial errors eight versions of this model to the data from
both treatments. In the full model, six parameters were
estimated: each of the three parameters b, h, and q was
estimated for each of the two treatments (defended and
undefended). We then fitted three models in which one
of b, h, and q was constant across the two treatments and
the other two parameters varied between treatments (i.e.,
five parameters were estimated, one of which was the same
for defended and undefended treatments). We then fitted
three models where only one parameter varied between
treatments (e.g., two estimates of b, one for each treatment,
and only one estimate of h and of q; a four-parameter
model). In the final model, one estimate was made for all
three parameters, resulting in a single functional-response
model being fitted to data from both treatments (a three-
parameter model). Modeling with more parameters gen-
erally improves fit with the cost of increased complexity.
Models were therefore compared using the Akaike Infor-
mation Criterion (AIC) and AIC weights (AICw; Wag-
enmakers and Farrell 2004) to determine each model’s
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relative support. The AIC strikes a balance between fit and
parameter number (Burnham and Anderson 2002).

We also performed two likelihood ratio tests, in order
to illustrate the robustness of the conclusions on the basis
of AIC. First, we compared the likelihood of the six-
parameter model to that of the five-parameter model in
which q was not estimated separately for each treatment.
This tests whether a single shape of functional response
can explain the observed data from both treatments or
whether different functional response types are required
for the two treatments. We also used a likelihood ratio test
on data from the defended treatment only. This tested
whether, for only this half of the data set, a Type II or III
functional response was a significantly better explanation
of the observed data.

Consequences for Population Dynamics

Any change caused by prey defenses observed in the func-
tional response may or may not contribute to population
stability. To illustrate any stabilizing effect of defenses and
changes in the functional response, we simulated popu-
lation dynamics using a straightforward Lotka-Volterra-
type model (Lotka 1925):

dN N
p rN 1 � � PNf, (2)( )dt K

dP
p �PRf � Pm. (3)

dt

Equation (2) describes the dynamics of prey density (N)
and equation (3) the dynamics of predator density (P).
Paramecium species display logistic growth in the absence
of a predators; logistic growth is therefore the first term
describing prey population dynamics (intrinsic growth rate
r and carrying capacity K). The second term is loss to
predation described by the functional response f(N) p
equation (1) without the P and T terms. Predator dynamics
are described by gains from predation, with � as the con-
version efficiency, and loss to mortality, with m as predator
death rate. We simulated population dynamics by nu-
merical integration for 500 time steps (∼500 prey gener-
ations) and then calculated, for the last 10 time steps for
both the prey and predator populations, a measure of
population stability: the inverse of the coefficient of var-
iation (Lehman and Tilman 2000).

There were three contrasting simulations with different
values of attack rate, handling time, and q: (1) with the
Type II functional response estimated from the unde-
fended prey (and ), (2) with the Type II functionalq p 0
response estimated from the defended prey (and ),q p 0

and (3) with the Type III functional responses estimated
from the defended prey ( ). Other parametersq p 1.52
were taken from distributions with ranges corresponding
to estimates from previous studies ( ,r p uniform [0.4, 1]

, , m p uniformK p uniform [10, 20] � p uniform [0.1, 1]
[0.08–0.12]). Each of the three contrasting simulations was
carried out 100 times, in order to assess the importance
of the different functional responses relative to the un-
certainty in other parameter values. To illustrate differ-
ences in the population dynamics themselves, we took a
single estimate of parameters from the random, plausible
distributions, so , , , andr p 0.7 K p 18.01 � p 0.43

, and plotted the dynamics of equations (2) andm p 0.09
(3) with functional responses derived from our data.

Results

Prey Defenses

Exposure to chemical cues from Stenostomum reduced
Paramecium speed by (fig. 1a;53.14% � 3.05% t p21

, ) and increased body width by7.94 p ! .001 38.00% �
(fig. 1b; , ).7.67% t p 8.36 p ! .00121

Predator Functional Responses

Exposure to predator chemical cues caused marked
changes in the predator’s functional response. The full
model with separate estimates of parameters b, h, and q
for undefended and defended Paramecium had the lowest
AIC (by 13 AIC units; table 1; fig. 2) and an AIC weight
of 76.5% (table 1), a level of support 5.5 times that of the
next best model. In the control treatment, parameter q
was not significantly different from 0, indicating a Type
II functional response (table 2). However, in the case of
defended prey exposed to predator cues, parameter q was
more than 2 SE greater than 0 (table 2), indicating a Type
III functional response. A likelihood ratio test indicated
that the full model was significantly better than the model
in which the shape of the functional response was not
allowed to depend on treatment level ( ,2x p 5.52 p p(1)

). Focusing on defended prey only, a likelihood ratio.023
test showed a significant difference between the fit of mod-
els where q was set to 0 and those in which q was a free
parameter ( , ), providing further evi-2x p 5.49 p p .019(1)

dence that q was different from 0 and that Stenostomum
feeding on induced Paramecium had a Type III functional
response.

The consequences for attack rates attributed to the dif-
ference in q between the undefended and the defended
prey is illustrated in figure 3. For undefended prey with
a Type II response ( ), attack rate is independent ofq ≈ 0
prey density; in contrast, defended prey, with ,q p 1.52
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Figure 1: Changes in two traits of Paramecium after exposure to cues from predators: a, differences in speed while foraging between the two
treatments; b, changes in Paramecium body width in the two treatments. Error bars are �1 SE.

Table 1: Ability of different models to explain the observed data

Model parameters
estimated separately
for each treatment AIC

Number of
parameters DAIC

Weight
(%)

b, h, q 230.1 6 .0 76.50
b, h 233.5 5 3.4 13.90
h, q 237.6 5 7.5 1.80
b, q 237.0 5 6.9 .70
h 236.3 4 6.2 3.50
b 276.5 4 7.5 !.01
q 237.5 4 7.4 1.90
None 294.0 3 63.9 !.01

Note: Models that did not estimate a parameter separately for each of the

two treatments (e.g., parameter q for the model in the second row) were

forced to estimate only one value of this parameter across the entire data

set (i.e., both treatments). The Akaike Information Criterion (AIC) is the

likelihood of a model discounted by its complexity (number of parameters);

DAIC is the difference between the AIC of a model and the AIC of the

lowest-AIC model; weight is the percentage support for a particular model

calculated according to the difference in AIC between the lowest-AIC model

and each of the others.

experience a greatly reduced attack rate at low prey density
and a greatly increased attack rate at high prey densities
(fig. 3). If a Type II response is fitted to the defended-prey
data, attack rates are represented by parameter b and are
constant across prey densities at a value of .b p 0.05

When the full model is fitted to the data, defended prey
have a lower value of parameter b, and this, combined
with , means that they experience low consump-q p 1.52
tion rates at low densities (fig. 3). Prey showing inducible
defenses also have a greater value of parameter h (handling
time), representing an ∼6.5-fold increase in handling times
(table 2).

Consequences for Population Dynamics

Simulated dynamics indicated that the population stability
of prey and predator was greater when the model included
the Type II–defended than when it included the Type II–
undefended functional response (fig. 4a, 4b). Population
stability was further increased when the modeled func-
tional response corresponded to the Type III response es-
timated from the defended data set (fig. 4a, 4b). The in-
crease in stability resulting from the Type III functional
response was large relative to the variation in population
stability caused by uncertainties in other parameter values
(fig. 4a, 4b). Plotting simulated data also illustrates both
the qualitative differences in population dynamics when
defended prey have a Type III or a Type II functional
response and the comparison with undefended prey (fig.
4c–4e). Regardless of defense level, fitting a Type II re-
sponse produced damped oscillations (fig. 4c, 4d); how-
ever, they settled to equilibrium faster for defended prey.
When the Type III response was fitted to defended prey,
no oscillations were observed (fig. 4e). Prey defenses also
appear to result in higher predator and prey equilibrium
densities (fig. 4c–4e).

Discussion

The behavior and morphology of Paramecium and the
functional response of the consumer Stenostomum were
fundamentally altered by preexposure of prey to predator
cues. Changes in the functional response were consistent
with the decreased swimming speed and increased size of
Paramecium preexposed to predator cue. We believe that
this represents the first demonstration of morphological
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Figure 2: Functional responses generated by fitting the Real (1977) pred-
ator equation to the data and allowing different sets of parameters to
vary between defended and undefended prey. For clarity, only the full
model and two others are displayed. The lines represent the modelq p 0
where a single value of parameter q was used for both defended and
undefended prey. Maximum likelihood estimation produced a value not
significantly different from 0, fitting a Type II curve to both treatments.
Raw data points are graphed; filled circles represent undefended prey,
and open circles represent defended prey. Data points have some random
horizontal displacement added for clarity.

Table 2: Parameter estimates for the full model fitted
to the data

Parameter Estimate SE

bundefended .17 .065
bdefended .0047 .0049
hundefended .29 .16
hdefended 1.96 .37
qundefended �.13 .25
qdefended 1.52 .72

Note: Forty-five microcosms were used for defended and un-

defended prey, giving a total sample size of 90. Handling time

(h) is in hours and appears realistic considering the number of

prey consumed at high prey densities; b and q contribute to attack

rate; actual attack rates are shown in figure 3.

and behavioral defenses in Paramecium, as well as the
benefits of these defenses. In addition, this appears to be
the first demonstration of induced defenses changing the
form of a functional response, from Type II to III. In-
ducible defenses without time lags theoretically stabilize
predator-prey interactions due to increased handling times
(Vos et al. 2004), and the change from a Type II to a Type
III may be another route by which inducible defenses sta-
bilize population dynamics.

The functional response is defined by three parameters,
b (attack rate), h (handling time), and q; the last dictates
whether the functional response will be Type II ( )q p 0
or Type III ( ). All three of the b, h, and q parametersq 1 0
were different for defended and undefended prey (table
2), indicating that defense induction substantially changes
the predator’s functional response. The change in the
shape of the functional response, from Type II to Type III,
was indicated by the change in parameter q. In a Type III
response, attack rates are related to parameters b and q
and are prey-density dependent (fig. 3). In a Type II re-
sponse, attack rates are related only to parameter b and
are constant across prey densities. For Stenostomum feed-
ing on undefended Paramecium, , indicating a Typeq ≈ 0
II functional response. In contrast, for defended Para-
mecium, , producing a Type III functional response.q 1 0

This change from a Type II to a Type III is due to low
attack rates at low prey densities (fig. 3), meaning that
relative predation risk is low. The low relative predation
risk at low densities (fig. 3) means that a lower prey birth-
rate is required to result in positive prey population growth
at low prey density, making for broader conditions that
can result in prey population persistence. In a Type II
response, the greatest relative risk of predation is at low
densities, meaning that small populations suffer a relatively
large risk of extinction (Sinclair et al. 1998; Sarnelle and
Wilson 2008).

While, in theory, Type III functional responses are sta-
bilizing relative to Type II, correlated changes in other
parameters or relatively little time spent at low prey pop-
ulation density may reduce or even negate this stabilizing
effect. The simulations that we performed indicate a strong
stabilizing effect of the Type III functional response per
se. Changes in handling time associated with the induced
defense caused an increase in population stability, but the
change to a Type III caused a large additional stabilizing
effect, both quantitatively in terms of increasing the inverse
of the coefficient of variation and qualitatively in terms of
removing the cycling-damped oscillations. Oscillations in-
crease the potential for populations to become extinct,
because at low densities, stochasticity may mean that the
population level drops below 0 (Gurney and Nisbet 1998).
This probability of extinction will be greater in the un-
defended prey through the combined effects of the greater
magnitude of oscillation and the increased number of cy-
cles. This indicates that induced defenses can stabilize
predator-prey dynamics via two mechanisms: increased
handling times and a shift to a Type III functional
response.

There are several potential explanations for the switch
from a Type II to a Type III response, and although testing
among mechanisms was not the goal of our research, some
guarded speculation is possible. The density dependence
of attack rates by Stenostomum on defended prey could
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Figure 3: Modeled attack rates ( ) estimated from the functional-qbN
response data, for control (undefended) and predator-exposed (de-
fended) prey. The most parsimonious model of the data is of density-
dependent attack rates for predator-exposed prey ( ) andq p 1.52
constant attack rates for undefended prey ( ). Attack rate is definedq p 0
as the rate of potential encounter; units are volume per unit of time.

happen if prey adjust their behavior depending on the
number of prey present. If prey densities in the experi-
mental wells are low, meaning that risk of consumption
is relatively high, Paramecium could reduce their speed to
a greater extent than at high prey densities. This density-
dependent speed reduction could be responsible for the
lower attack rate at low prey densities (fig. 3). This ex-
planation for the change in functional-response type high-
lights the need for further research into density depen-
dence of prey defensive traits (Schaffner and Anholt 1998;
Wiackowski and Staronska 1999).

The asymptote of the functional response was also
greatly changed by exposure to predator cue. Handling
time determines the height of the asymptote of the func-
tional response, that is, the maximum prey-ingestion rate.
This change in handling time is likely related to the width
increase observed in predator-exposed Paramecium. Mor-
phological defenses have been shown to increase handling
times due to the increased time required to capture, sub-
due, and digest prey (Jeschke and Tollrian 2000; Altwegg
et al. 2006). Time spent handling during failed attacks
increases handling time, as it is time that cannot be spent
searching for new prey. As there is a potential association
between increased handling time and chance of escape, it
may be selected for at the individual level.

Changes in predator behavior may also explain the
change in the functional response. Type III functional re-

sponses were initially associated with vertebrate predators
where learning played an important role, until several ex-
amples were documented in invertebrates (Hassell et al.
1977). In particular, learning was the prey-density-depen-
dent formation of search images. Learning capacity of an
organism such as Stenostomum may be limited, although
we cannot rule out that it could have been responsible for
higher attack rates at high prey densities, particularly in
the induced treatment, when prey were larger.

It is also conceivable that prey-density-dependent changes
in handling time were in part responsible for the change
to a Type III response: defended individuals are likely
harder to handle, and Stenostomum may require some ac-
climatory or learning time to handle them faster. Prey-
density-dependent handling times are not usually consid-
ered in studies of functional responses. However, partial
consumption can be more common at high prey densities,
and feeding may become “sloppier.” This should lead to
a reduction in handling times at high prey densities (Sih
1980), and further studies should address this possibility
directly. Therefore, it is possible that density dependence
of handling time could contribute to the observed shift
from a Type II to a Type III response, and separating the
effect of this from the effect of density-dependent attack
rates should be a goal of subsequent experiments.

In a previous functional-response study, Altwegg et al.
(2006) showed that Stenostomum consuming Euplotes, re-
gardless of defense level, had a Type III functional re-
sponse. The differences in the functional responses be-
tween Stenostomum feeding on Paramecium and those
feeding on Euplotes may be related to differences in mor-
phology. Undefended Euplotes are still relatively wide and
therefore harder to consume (Altwegg et al. 2006). As they
are harder to consume, there may again be some form of
learning time associated with them producing a Type III
response regardless of defense level. In addition, if pred-
ators abandon a predation attempt on defended prey
sooner, to allow searching for another prey item when prey
are abundant, this will increase the apparent attack rate
(Anholt et al. 1987). This increase could lead to the pattern
of attack rates observed here, where attack rates for de-
fended prey were higher than those for undefended at high
densities (fig. 3). However, as handling times were so much
higher (∼6.5#) for defended prey, although they were
attacked more often, the increased handling times mean
that actual consumption rates were lower.

There is also the potential that after cue exposure, some
prey may become so large as to be invulnerable. Across
the duration of the experiment, consumption of suscep-
tible prey would result in a proportional increase in in-
vulnerable prey. However, this alone would be insufficient
to produce a Type III response, as the numerical-integra-
tion method of analysis accounts for prey depletion. At
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Figure 4: a, b, Population stability generated from simulations of predator-prey population dynamics with different defense treatments and estimated
functional response type: prey population stability (a); predator population stability (b). c–e, Illustrative dynamics of predator and prey population
densities generated from a Lotka-Volterra-type model incorporating functional responses derived from our empirical data: undefended prey (c, Type
II); defended prey (d, Type II); defended prey (e, Type III). See the text for further information.

present, these potential mechanisms are speculative, re-
quiring validation, and may be a productive area for future
study.

Previous work on other ciliate species being preyed on
by Stenostomum shows a complex temporal interplay be-
tween the expressions of behavioral and morphological
defenses (Hammill et al. 2010). In our study, this time
course of defenses was not measured, but control indi-
viduals in the functional-response experiment may have
induced some behavioral changes and started production
of morphological defenses. However, due to the short du-
ration of the experiment, morphological changes ought to
be minimal, and we observed no obvious differences here
(E. Hammill, personal observation). Any induction of un-
defended prey during the functional-response trial would
likely reduce the effect of preexposure to predators, making
our results, if anything, conservative.

In addition, we did not examine how the magnitude of
defense expression is related to predator or prey density,
which, as we stated above, may be driving the switch from
a Type II to a Type III. Densities of both predators and

prey have been shown to affect defense levels in other
ciliates (Wiackowski and Staronska 1999) and may affect
the form of the functional response we observed. This is
the first time that inducible behavioral and morphological
defenses have been documented in Paramecium, and in-
vestigations into density dependence may be a good di-
rection for future study.

In summary, we show inducible defenses for the first
time in Paramecium and illustrate how preexposing prey
to the threat of predation can alter the predator’s func-
tional response. By adopting a rigorous analytical ap-
proach, it was possible to relate different defensive traits
to the aspects of predation they affect. We were then able
to speculate about the relationship between a defensive
trait and the potential form of protection it confers. In
the future, it may be possible to make the model fully
mechanistic by clarifying the link between its parameters,
the observed behavioral and morphological defenses, and
possible dependence of defense induction on prey density.
This would allow the mechanistic relationships between
defense and functional response to be better explored and
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a deeper understanding of predator-prey dynamics to be
provided.
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